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ABSTRACT

We reformulate the M1 model of the radiative transfer, i.e. the moment equations up to
the first order, for clarifying the physical and mathematical properties. The M1 model is
proved to be equivalent to the hydrodynamic equations of ultra relativistic particles. We
show two forms: one expressed with the classical Newtonian velocity and the other
expressed with the relativistic four velocity. We use the enthalpy density, i.e. the sum of
the energy density and the isotropic component of the pressure, instead of the energy
density in both forms. The former serves to show us that the ratio of the flux to the
enthalpy density denotes the bulk velocity of the radiation in the M1 model. The latter
serves us to propose a Lorentz invariant form useful for taking account of the
Doppler shift.
© 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC
BY-NC-SA license (http://creativecommons.org/licenses/by-nc-sa/3.0/).

1. Introduction

Radiative transfer is ubiquitous in many scientific fields
and therefore a lot of efforts have been dedicated to
solving the transfer equation. However, in its original form,
the transfer equation depends on 7 independent variables
(three for space, one for time, one for the photon fre-
quency and two for their direction of propagation). Due to
this large number of degree of freedom, solving the
transfer equation in 3D is extremely demanding in terms
of computing power and it will be out of reach for
radiation-hydrodynamics simulation for the foreseeing
future. For this reason, many authors have proposed
approximation to the full transfer equation. Many of them
consist in taking successive moment of the radiative
transfer equation in order to eliminate the angular degrees
of freedom [1-3, and references therein]. Using this
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procedure considerably simplify the transfer equation,
but requires a closure relation expressing the moment of
highest order in terms of moments of lower order to close
the system.

The simplest of these moment models is the well
known diffusion approximation where only the equation
on the Oth moment (i.e. radiative energy) is conserved. The
closure relation is obtained by assuming that the photon
distribution function (or the pressure tensor) is isotropic.
This diffusion approximation is exact in the limit of
optically thick media and is rather a strong approximation
in other situations. The main drawback of the diffusion
approximation is that the radiative flux is always aligned
with temperature gradient. There are several ways to go
beyond this diffusion approximation, as for example the P,
approximation recently proposed by Schéfer et al. [4] or the
spherical harmonic scheme [5,6]. Other authors [2,7-9]
have chosen to keep one more equation in the moment
hierarchy and to use both the radiative energy and the
radiative flux. One then needs a closure relation giving the
Eddington tensor (i.e. ratio of the pressure tensor and
radiative energy) in terms of these two variables. A possible
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way to find this closure is to use the so-called M1 model
[2]. The M1 model gives a good approximation to the
radiation field in both optically thin and thick regions. A
shadow behind an absorber or reflector is often referred to
as an evidence. It is also useful to evaluate the interaction
of radiation with gas since often the radiative flux as well
as the energy density are required for the evaluation. Even
if the M1 model is used by several teams [10-16], little
work has been dedicated to the study of the physical
insight of this model. Indeed, the complexity and non-
linearity of the closure relation make our physical insights
and numerical analysis difficult. The goal of the present
paper is to clarify the nature of the M1 model equations
and to propose new variables which express them in a
simpler form.

This paper is organized as follows. After a short review of
the M1 model equations, we show that they can be expressed
in a simpler form if we use the enthalpy density instead of the
radiation energy density in Section 2. It is also shown in
Section 2 that the ratio of the energy flux to the enthalpy
density can be interpreted as the Newtonian bulk velocity of
the radiation. In Section 3 we show another form of the M1
model equation in which the four velocity is used instead of
the velocity. This second form is proven to be Lorentz
invariant. In Section 4 we calculate the wave pattern appear-
ing in the M1 model equations using this new formulation.
We show that transverse waves propagate at the normal
component of the bulk velocity as in relativistic hydrody-
namics. In Section 5 we discuss the Riemann problem of the
M1 model equations to show that the M1 model equations
are equivalent to the hydrodynamical equations of ultra
relativistic particles. We discuss the implications in Section
6. We often omit the source terms, i.e. absorption, emission,
and scattering in Section 2 through Section 5 in order to
simplify the discussion. The new forms of the M1 model
equations are given including the source terms in Appendix A.
We discuss the validity for omitting the source terms in the
last part of Section 5.

2. M1 model equations

In this section, we briefly recall how the M1 model is
obtained from the equation of the radiative transfer. The
latter can be written as
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where I, and B, denote respectively the radiative intensity
and the Planck function at the frequency, ». They are
functions of the time, t, position, x, the direction of
propagation, n, and the frequency, v. The symbols, p, c,
and dQ denote the density, the speed of light, and
integration over the solid angle, respectively. In the fol-
lowing we assume for simplicity that the absorption
opacity (x,q) as well as the scattering (x,s) are isotropic
and independent of the frequency.

Taking the first two moments of this equation, we
obtain
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where the energy density (E), the energy flux (F;) and the

pressure (P;) are defined as
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where e; and e; denote the unit vectors in the i-th and j-th
directions, respectively. The symbols, T and a, denote the
temperature and the radiation energy density constant,
respectively.

System (2) and (3) can then be closed by introducing
the M1 closure relation
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where » and §; denote the Eddington factor and the
Kronecker's symbol, respectively.

Eq. (7) can be derived only from the assumption that
the photon distribution function is symmetric around the
direction parallel to the energy flux. The closure itself, i.e.
Eq. (10), was first proposed by Levermore [17] in the
context of building flux limited diffusion model. He
obtained this relation by assuming that the photon dis-
tribution function is restricted to be the Lorentz transform
of a Planckian (i.e. that there exists a reference frame
where it is isotropic). The same closure relation can be
derived from the minimum entropy principle as clearly
mentioned in the monograph by Struchtrup [18]. Essen-
tially the same closure relation was obtained for phonon
gas hydrodynamics by Larecki [19] and for one dimen-
sional radiative transfer by Fort [20], although the relation
to Levermore closure was not mentioned. Dubroca and
Feugeas [2]| proposed the use of the closure relation to
solve the radiative transfer in three dimension.

In addition to these two approaches, Eq. (10) can be
derived from another argument. For later convenience, and
in analogy with gas thermodynamics, we define the
enthalpy density as the sum of the energy density and
the isotropic component of the pressure:

H:E+P:3¥E, (11
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