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a b s t r a c t

The calculations of the reduced matrix elements for 441 rotational collisional transitions for
rotational quantum numbers of the lower state up to J″¼20 in the vibrational ground state of
H2

16O are presented using effective and ab initio wavefunctions. Effective wavefunctions are
derived from a Watson A-reduced Hamiltonian with the effective parameters determined by
Matsushima et al. [Matsushima et al., J Mol Struct 1995;352–353:371]. The ab initio
wavefunctions used in this study are from the work of Partridge and Schwenke [Partridge,
H, Schwenke, DW. J Chem Phys 1997;106:4618]. The comparison of the reduced matrix
elements obtained by both methods is described. It is demonstrated that, even for the
rotational band, the effective wavefunctions show problems for some states.

& 2014 Published by Elsevier Ltd.

1. Introduction

The transition moments of optically or collisionally
induced transitions are fundamental quantities in physics, as
their squares are proportional to the probability of a transition
for the interaction under consideration [1]. The Wigner–
Eckart theorem [see Appendix A of Ref. [2] and references
therein] states that, for the interaction operator expressed
under the form of an irreducible tensor, the transition
moments can be written as the product of two parts, one
depending of the projection of the magnetic quantum num-
bers, the other being independent of them. The first part can
be expressed as a Clebsch–Gordon coefficient (or a Wigner 3-j
symbol, equivalently [2]) whereas the second is the so-called
the reduced matrix element (RME). Transition moments, and
therefore reduced matrix elements, are involved in a wide
range of physical problems, including the determination

(empirically or calculated) of intensities [1,3–8], the calcula-
tions of optical cross-sections for collisionally induced transi-
tions (line shape parameters) [9–14], the modeling of
planetary atmospheres [7], the radiative transfer theory [15],
Non-LTE applications [4,16,17], etc. For an optical transition
from a lower state i to an upper state f, the square of the
dipole transition moment for a given electrostatic interaction
(dipole, quadrupole, etc.) is related to the oscillator strength, to
the Einstein A coefficients for spontaneous emission and to
the intensities [4,5]. The intensities and the optical transition
moments (in general for the electric dipole interaction), or
equivalently the A coefficients, can be found in a number of
line lists and databases [18–24], widely used for spectroscopic
applications. In semi-classical theories [9–14] used for the
calculations of the line shape parameters, the optical cross-
sections can be expressed as the product of terms describing
the relative motion between the perturber and the radiator
(resonance function), and the reduced matrix elements
for both the perturber and the radiator. In this work the focus
is on the reduced matrix elements describing the collisionally
induced transitions from a lower state i and an upper state i0.
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The calculation of the reduced matrix elements requires
the evaluation of the matrix element of the (optical or
collisional) operator representing the interaction between
the wavefunctions for the lower and upper ro-vibrational
states. The wavefunctions for a given ro-vibrational state of
an asymmetric rotor can be obtained by diagonalizing the
Watson Hamiltonian (WH) [25] in a symmetric top basis. In
a few studies the effective constants of the reduced Watson
Hamiltonian were obtained non-empirically from the
potential energy surface [26–28]. However, these para-
meters are generally obtained through fits of experimental
data in a narrow spectral region. This empirical procedure
has a number of difficulties and problems of extrapolation
to other spectral regions or to higher rotational quantum
numbers [29], the extrapolation for isotopic substitutions
(in particular those changing the symmetry, as H’-D)
[30], the possible correlation between the determined
parameters [31], the possible interactions with “dark” states
(states non experimentally observed) [32,33], etc. In addi-
tion, the Watson Hamiltonian model is derived for isolated
vibrational states and the consideration of vibrational
interactions are more complicated [34,35]. In an attempt
to solve this problem, the empirical studies add terms
describing the Coriolis, Darling–Dennison, and Fermi reso-
nances [31,36] but with empirically determined parameters
to the Hamiltonian. However, as the energy increases the
importance of the various resonances becomes more
important, and the determination of the empirical para-
meters is an ill-posed problem. Also, effective models are
based on perturbative expansions (contact transformations
[26,28,30,36]) that suffer from slow convergence for light
asymmetric rotors [26,37].

The wavefunctions can also be obtained from first princi-
ples using techniques based on the variational principle for
the nuclear motion [7,23,38,39]. These calculations aim to
provide “exact” solutions (within the Born–Oppenheimer
approximation, and the numerical procedure employed) to
the Schrodinger equation using an exact kinetic operator and
a potential energy surface (PES) [7,40–43]. The PES are
generally obtained by ab initio calculations and fitted to
experimental energy levels [23,44] in order to reach the
required accuracy. One important feature of these methods
is that due to the “exact” nature of the solutions all resonances
are automatically included. However their precise form
depends strongly on the potential energy surface used and
they can be hard to model correctly. Table VI of Ref. [23]
shows the entropy of mixing of the J¼0 levels of H2O
computed with the potential from that work. The (000) level
is well isolated from other levels and has insignificant
resonance mixing with other levels. The variational calcula-
tions use only rigorous quantum numbers and symmetry
proprieties; hence linking “global” and “spectroscopic” (i.e.
normal modes) assignments can be difficult. A review of
advantages and inconveniences of each method can be found
in Ref. [45].

The reduced matrix elements are related to the prob-
ability of a transition between a lower state i and an upper
state i0 [1]. Using the Wigner–Eckart theorem, sum rules
on the sum of the square of the projection of the RMEs can
be derived (see Appendix B). For line shape problems,
these sum rules depend of the order of the interaction

under consideration and are independent of the ro-
vibrational collisionally connected states. Hence the sum
rules provide a check of the calculations based on physical
proprieties. The sum rules are also useful to check the
assignments of quantum numbers to the ab initio levels.

Due to its importance in Earth's atmosphere and in the
interstellar space [46,47], this paper focuses on collision-
ally induced transitions for the main isotopologue of
water, H2

16O, and in particular on its vibrational ground
state, (000). The ground state is generally considered an
isolated band as no vibrational resonances are involved.
Hence, small differences are expected between the
reduced matrix elements obtained using ab initio and
effective wavefunctions. This paper presents the calcula-
tion of the reduced matrix elements using the two forms
of wavefunctions as described below. The dipole, quadru-
pole, octupole, and hexadecapole (ℓ¼ 1 to ℓ¼ 4 [2])
interactions are considered. The comparison of the
reduced matrix elements using ab initio and effective
wavefunctions, within the domain of validity of the fit of
the constants and in extrapolated ranges, is presented.

2. Theory

2.1. The intermolecular potential

For line shape calculations, the intermolecular potential
for a H2O–A2 collisional system can be expressed in the
following tensorial form [2,48]:

V ¼ ∑
ℓ1ℓ2

ℓ

∑
n1

m1m2

m

∑
w;q

Uðℓ1ℓ2ℓ;n1wqÞ
Rqþℓ1 þℓ2 þ2w Cðℓ1ℓ2ℓ;m1m2mÞDℓ1

m1n1

ðΩ1ÞDℓ2
m20

ðΩ2ÞYℓmðωÞ ð1Þ

where Cðℓ1ℓ2ℓ;m1m2mÞ is a Clebsch–Gordan coefficient, D
is a Wigner D-matrix,Ω1¼(α1, β1, γ1) andΩ2¼(α2, β2, γ2)
are the Euler angles describing the molecular fixed axis
relative to the space fixed axis. ℓ1; ℓ2 and ℓ are the rank of
the D-matrices and spherical harmonic, m1, m1, and m are
the projection along the space-fixed axis and n1 is the
projection along the body-fixed axis, and w (an integer) is
from the expansion of Sack [49] to map the atom–atom
distance rij to the center of mass separation R. ω¼(θ,φ)
describes the relative orientation of the centers of mass,
and Ylm is a spherical harmonic function. The
Uðℓ1ℓ2ℓ;n1wqÞ are coefficients of the spherical expansion
of the potential and ℓ1þℓ2þ2w is called the Order of the
expansion of the potential, q is 1 for electrostatic interac-
tions and 6 or 12 for the atom–atom interactions. Note the
potential is comprised only of rotational operators. Here
we are concerned with the Wigner-D matrix of the active
molecule (water), Dℓ1

m1n1
ðΩ1Þ.

The development is based on the conventions of Gray
and Gubbins [2] and references therein (see Appendix A of
Gray and Gubbins for details). The conventions used in this
work are as follow: the choice of the body fixed axis
system is the I

r
representation [50] of the water molecule,

passive rotations, and the Condon and Shortley phase
convention. Caution must be taken not to make
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