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a b s t r a c t

Due to the high computational cost of time-dependent radiation transport calculations,
most multi-dimensional simulations of stochastic media have used the lowest angle order
approximation, the P1 approximation. Here spherical harmonics of order n¼5 are used to
solve the transport equation in two-dimensional binary stochastic media. The results are
consistent with earlier P1 simulations. Transport solutions using constant and temperature-
dependent opacities and heat capacities are shown and analyzed. The standard closure
poorly approximates the mean radiation field in these test problems. For one physical case,
a less common closure is better. To best fit the most general cases, a new procedure is
presented. In all cases, the approximate transport solutions work best in dilute systems
where one material comprises less than about 10% of the total. The conclusions reached
here should be independent of the transport solution method whether one uses spherical
harmonics or discrete ordinates.

Published by Elsevier Ltd.

1. Introduction

There are many situations where there is interest in the
transport of radiation through stochastic media. Raindrops
in clouds are complex because electrical charges may
cause them to be not totally random. Molecular clouds in
the interstellar medium provide lumps of opacity to hinder
the flow of starlight. Nuclear reactors can use regular rod
structures or randomly placed pellets. Turbulent flows in
inertial confinement fusion plasmas can look locally ran-
dom with larger scale gradients. The test cases presented
here are generic. The geometry and physical attributes are
not intended to model any specific situation. The goals of
this work are to increase the understanding radiation flow

through multi-dimensional stochastic media and to find
approximate solutions for the mean radiation field.

Many authors have published studies of radiation
transport through binary stochastic media with the pur-
pose of trying to find a model that approximates the
ensemble averaged transport solution with easy to solve
equations. Early work (for example [1–4]) treated pure
radiation with no material coupling. Then research began
to include coupling with a material equation [5,6]. All this
work was done in one-dimensional slab or rod geometries.
Unfortunately, it was found in [7] that models such as the
standard closure of Levermore and Pomraning (LP) [1] that
can be successful in one dimension do not work as well in
multidimensions.

Previous work by this author [7,8] in multidimensions
used the lowest angle-order approximation, P1, in order to
reduce the computational cost of the transport solutions.
In the present work, spherical harmonics [9,10] of order
n¼5 are used for the transport solutions. This is a high
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enough order to capture most of the angle dependence
of the test problems and is a low enough order to be
computationally affordable on a personal computer. The
conclusions arrived at here are consistent with the earlier
conclusions based on the n¼1 solutions. No fundamental
changes are observed when using higher-order transport
solutions.

Simplifying assumptions are often made in order to make
theoretical analysis more tractable. Pure radiation with no
material coupling is obviously much simpler. When coupled
to a material energy balance equation, it is often assumed
that the opacities are constant and the heat capacity varies as
the cube of the material temperature, T. This allows for a
linearization of the equations around the material energy
variable, B¼T4. Unfortunately, no known material has such a
temperature dependent heat capacity. A constant heat capa-
city is more physically reasonable. Therefore, since it is not
relevant to real-world transport, linearized transport will not
be examined here. Three test problems are presented: (a)
constant opacities and constant heat capacities, (b) opacities
varying inversely with the temperature and constant heat
capacities, and (c) opacities varying inversely with the
temperature and a Saha-like temperature-dependent heat
capacity.

Several methods for approximating the mean radiation
field are tested. It is found that different methods may be
optimum depending on what physics is assumed. The
standard LP closure [1] does not work well on any of the
test problems examined here. An alternate closure [4] fits
all the cases reasonably well, but only with temperature
independent opacities and heat capacities are the results
useful in a predictive sense. A more generalized approach
works well for the cases with temperature dependent
physics, but does poorly on the test problem with constant
opacities and heat capacities.

The following section presents model equations that
attempt to calculate the mean radiation energy density in
a two-material stochastic medium. Then three sections
examine the results for the test problems. In each case a
model is found that may be useful in calculations that do
not resolve the stochastic nature of the medium. The last
section gives a summary and some conclusions.

2. Equations used to model stochastic media

The standard closure in a binary medium uses two
coupled transport equations, one for each material. For
notational simplicity, the equations are presented here in
one-dimensional slab geometry. As in previous work [7,8],
the transport for material i can be written as
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where the i subscript represents one material, 1 or 2, and j
represents the other, 2 or 1, respectively. The first three terms
on the right hand side are the usual absorption, emission,
and scattering terms. The remaining terms couple the
transport equations for the two materials. The scaling on
these terms is a combination of an arbitrary dimensionless
constant (α or β) and the mean chord length in each material,

λi (defined in a following paragraph). The terms scaled by α
are the standard closure used by most authors, are often
attributed to [1], and are usually referred to as the Levermore
and Pomraning (LP) closure. The terms scaled by β were
proposed in [4], but have not been used widely by other
authors. As originally proposed, these closures assume that
α¼1 and β¼1. Much better fits to the mean radiation field in
the stochastic medium are found with values other than
unity. Whenmodeling a medium consisting of 1D alternating
slabs, then there is an additional angle cosine factor multi-
plying the α term. When modeling a homogenized two- or
three-dimensional medium, the cosine factor is not appro-
priate [6,8].

The material equation to be solved with Eq. (1) is given by
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where cVi is the heat capacity and Ti is the temperature of
material i. Here we are using units such that B¼T4 and
E¼ T4

r are the material and radiation energy densities and Tr
is the radiation temperature.

Consider a stochastic medium consisting of identical
high opacity non-overlapping disks randomly placed in
square 1 cm on a side. The disks are labeled as material 1
and have an absorption opacity of σa1. The probability that
any point in this region lies inside such a disk is p1. When
disks intersect the boundary, only that part inside the unit
square is included in p1. The background low opacity
material covers the remaining area with p2¼1�p1.
A mean chord length, λi, characterizes each material.
It measures how much of a ray randomly placed in the
medium is covered by each material. These quantities are
related through the expression pi¼λi/(λ1þλ2). If all the
disks have the same radius, the mean chord length across
them is π/2 times the radius of the disks (see [11]). This 2D
Cartesian medium actually represents a 3D medium with
infinitely long rods; however, it is easier and common in
the literature to discuss it as a 2D medium with disks.

The goal of solving Eqs. (1) and (2) is to find the mean
radiation field for an ensemble average of media with
different disk locations. The mean intensity and tempera-
ture are simply given by I¼p1I1þp2I2 and T¼p1T1þp2T2.
These predicted means are compared to the actual means
obtained by averaging multiple realizations of the stochas-
tic medium.

An analysis by Prinja and Olson [6] started with the
above LP equations and found an asymptotic regime where
these equations reduced to a single standard transport
equation with effective coefficients coupled to a single
material equation:
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This process required the introduction of scaling para-
meters. These parameters and the resulting effective
opacities for their high-contrast opacity analysis are

〈σa〉¼ p1σa1þp2σa2; ~σ ¼ p1σa2þp2σa1; σ̂ ¼ ~σþ α

λc
; ð4aÞ
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