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a b s t r a c t

Single scattering of light by a finite mirror symmetric collection of independently
scattering randomly oriented particles is considered as observed in the far-field. It is
shown that the slopes of the scattering function and all other elements of the scattering
matrix are functions of the scattering angle that tend to zero when the direction of the
scattered light tends to the strict forward or backward direction. This result is obtained by
introducing an extended scattering matrix, based on symmetry arguments. The theory is
illustrated and clarified by practical examples of scattering functions and scattering
matrices. Various applications are also considered.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In theoretical and experimental studies of light scattering
by particles a key role is played by the scattering matrix. This
4�4 matrix determines the four Stokes parameters of singly
scattered light traveling in a certain direction for a given
beam of polarized incident light [1–4]. The scattering matrix
depends in general on a polar angle, θ, in the closed range
½0; π�, and an azimuth angle, ϕ, in the closed range ½0;2π�,
where θ¼ 0 for strict forward scattering and θ¼ π for strict
backward scattering. In this paper we only consider single
scattering by finite mirror symmetric collections of randomly
oriented particles. The particles scatter light independently
and a detector is located in the far-field. Such collections are
frequently met in theoretical and numerical work on light
scattering. In practice they are often very suitable approx-
imations. Due to rotational symmetry of the collections there

is no dependence on azimuth and the scattering matrix can
be written as FðθÞ.

The first element of FðθÞ is the scattering function FðθÞ.
This scalar function is the only element we need when
polarization is ignored. In general it has several interesting
features like maxima and minima [1–5]. The features near
strict forward and backward scattering are, however,
difficult to uncover by experimental means [6]. Further-
more, in results of numerical computations the behavior of
FðθÞ when θ tends to zero or π is often not clearly shown,
due to the use of an insufficient number of values for the
scattering angle (i.e. the mess is too coarse). This happens
in particular for the strong forward peak of the scattering
function produced by large particles. Similar problems
near strict forward and backward scattering occur for
some other elements of the scattering matrix.

In this paper we study the behavior of all elements of
the scattering matrix when the scattering angle tends to
zero or π. In Section 2 the form of the scattering matrix,
FðθÞ, is discussed and the extended scattering matrix, GðθÞ,
is introduced. It is shown that all elements of GðθÞ have a
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horizontal tangent if θ is zero or π. For this reason the
slopes of all elements of FðθÞ tend to zero when θ tends to
zero or π. This also holds for a number of combinations of
such elements, as proven in Section 3. The next section is
devoted to examples that clarify and corroborate the
theory expounded in the preceding sections. Various
applications of the main results of the theory are discussed
in Section 5. Appendix A is devoted to derivatives of
electric fields, Stokes parameters and elements of the
extended scattering matrix. In Appendix B some general
properties of polynomials are employed to show that all
generalized spherical functions have finite derivatives with
respect to x and θ, where x¼ cos ðθÞ.

2. Scattering in a plane

Suppose a finite collection of independently scattering
particles at the origin, O, of a Cartesian coordinate system is
illuminated by a beam of light and provides beams of singly
scattered light in all directions in three dimensional space. A
detector is located at a far-field observation point. Fig. 1 shows
the situation for a direction of the scattered light with polar
angle θ. We use Stokes parameters I, Q, U and V to describe the
intensity (or flux) and state of polarization of a beam of quasi-
monochromatic light and make these parameters elements of
a column vector, I ¼ ½I;Q ;U;V �t , called the Stokes vector,
where the superscript t stands for transpose [1,4]. Here I is
positive and not smaller than the absolute value of any of the
other Stokes parameters. The reference plane for the Stokes
parameters is the plane of scattering, i.e. the plane defined by
the directions of the incident and scattered light beams.

We can now write

IsðθÞ ¼ cFðθÞIið0Þ; ð1Þ
where Iið0Þ and IsðθÞ are the Stokes vectors of the incident
and scattered light beams, respectively, c is a positive
constant that does not depend on θ and FðθÞ is the 4 by
4 scattering matrix. It is important to note that the angle θ
in Eq. (1) is restricted to the range 0rθrπ. For an
arbitrary collection of particles the Stokes vector of the
scattered light and the scattering matrix may not only
depend on θ, but also on an azimuthal angle, as far as
directions are concerned. However, this is not the case in
this paper, since we only consider mirror symmetric
collections of randomly oriented particles. Therefore, the
scattering matrix is of the form:

FðθÞ ¼

F11ðθÞ F12ðθÞ 0 0
F12ðθÞ F22ðθÞ 0 0

0 0 F33ðθÞ F34ðθÞ
0 0 �F34ðθÞ F44ðθÞ

0
BBBB@

1
CCCCA; ð2Þ

where FijðθÞ stands for the element in the i-th row and j-th
column of FðθÞ. Among the collections included are [1] the
following:

(i) randomly oriented particles with a plane of symmetry,
like spheres, bi-spheres, spheroids, cylinders, cubes, etc.,

(ii) randomly oriented particles with their mirror parti-
cles in equal numbers, like right-handed screws and
left-handed screws,

(iii) randomly oriented particles that are so small compared
to the wavelength that Rayleigh scattering is sufficiently
accurate, like molecules for visible incident light.

The positive element F11ðθÞ is the scattering function and
can also be written as FðθÞ. The absolute value of each other
element is smaller than or equal to F11ðθÞ. The relations
F21ðθÞ ¼ F12ðθÞ and F43ðθÞ ¼ �F34ðθÞ are due to reciprocity.
The fact that the eight elements of the 2�2 matrices in the
lower left and upper right corners are identically equal to
zero is due to mirror symmetry with respect to the scattering
plane. This was briefly mentioned by Hovenier in 1969 [7]
and treated more extensively in [4].

To study the behavior of the scattering matrix when θ
tends to zero or π we will now extend the range of θ by
measuring θ clockwise from the forward scattering direc-
tion in the range ½0;2π�, which is equivalent to measuring θ
anti-clockwise from the forward scattering direction in the
range ½0; �2π�. This is shown in Fig. 2 where we have
0rθrπ in S1, i.e. the right half-plane (as in Fig. 1) and
�πrθr0 in S2, i.e. the left half-plane. For strict forward
scattering θ¼ 0 and for strict backward scattering θ¼ 7π.
The directions given by θ and �θ of the scattered beam are
symmetric with respect to the strict forward as well as
strict backward scattering directions. We have thus com-
bined two half-planes into one complete plane. We can
now write instead of Eq. (1):

IsðθÞ ¼ cGðθÞIið0Þ; ð3Þ
where �πrθrπ. We use GijðθÞ to denote the element in
the i-th row and j-th column of GðθÞ. For a fixed beam of

Fig. 1. Light scattering by a collection of particles at a point O in a
direction making an angle θ with the direction of the incident light.
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