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a b s t r a c t

Mie computations of the scattering properties of large particles are a time consuming step
in the radiative transfer modeling of aerosol and clouds. Currently, there exist two
methods based on the use of spherical functions for computing the Fourier moments of
the phase matrix of a given spherical particle or particulate polydispersion: The first,
developed over the years before being presented in a convenient form by Siewert [31],
required an intermediate computation of the phase matrix over which numerical
integration was performed to deliver the required Fourier components. The second,
suggested by Domke [9], promised a direct computation of the Fourier moments using
Wigner 3-j symbols.

While the former was relatively easy to implement and is thus the most commonly
used to date, its numerical implementation using an arbitrary user choice of angular
quadrature (NAI-1) can produce inaccurate results. Numerical integration using quad-
rature points as recommended by de Rooij and van der Stap [5] (NAI-2) delivers accurate
results with high computational efficiency.

Domke0s method enables a direct computation of the exact number of required Fourier
components. However, the original manuscript contained several misprints, many of
which were subsequently corrected by de Rooij and van der Stap [5]. Unfortunately, the
main recurrence relationship used in Domke [9] remained uncorrected. In this paper, the
corrected relationship is presented along with other minor corrections.

de Rooij and van der Stap [5] had found the straightforward application of Domke0s
method viable only for size parameters smaller than �120 due to issues involving
computer storage. A means of implementing the corrected Domke formalism using
precomputed tabulations of Wigner 3-j symbols (PCW) is presented here, making it more
computationally economical and applicable over much broader particle size ranges. The
accuracy of PCW is only limited by machine precision. For a single particle, NAI-2 is found
to be faster than PCW for size parameters greater than about 228, whereas for
polydispersions over a finite range of particle sizes, PCW is found to be at least 6–8 times
faster for size parameters ranging from �0 to beyond 900. PCW thus allows for significant
reduction of the computational burden associated with Mie calculations for polydisper-
sions.

Published by Elsevier Ltd.

1. Introduction

Applications such as the remote sensing of aerosol and
clouds using optimized inversion methods have long been
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impeded by the time required for the accurate Mie
computation of the optical properties of spherical particu-
late polydispersions, viz., extinction cross-section, single
scattering albedo and the Fourier moments of the phase
matrix, for further use in radiative transfer models
[34,11,33,22,39,12,17,24,25]. This often forces the opera-
tional use of less flexible approaches such as precomputed
look-up tables [23,14], or restricts the scale of the data to
be analyzed to isolated case-studies [26] or synthetic
sensitivity studies [26,7]. Hence, both efficiency and accu-
racy are critical to the choice of a method for the Fourier
expansion of the phase matrix of a given particle or, more
frequently, particulate polydispersion.

There exist two main methods for expanding a phase
matrix in terms of its Fourier components. Usually, the
scattering matrix is computed first at an appropriate
number of angles. The expansion coefficients are com-
puted by performing numerical integrations of its product
with generalized spherical functions over this angular
range. Theoretical work was done following this approach
by Sekera [29], Kuščer and Ribarič [15], and Dave [4] and
was presented in the form of “Greek matrices” (to be pre-
and post-multiplied by matrices composed of generalized
spherical functions computed along the directions of
scattered and incident light, respectively) by Siewert
[31]. While Siewert [31] demonstrated in theory that
integration over the angular range of scattering was a
viable means of computing the Fourier moments of the
phase matrix, they did not provide a recommendation for
the choice of angles to be used in the actual implementa-
tion of their method. Gauss–Legendre quadrature was
generally used with an arbitrary number of roots. Some-
times, a large number of quadrature roots were avoided
altogether by subdividing the full angular range into a
number Nblock of equal subintervals. A small number
(usually of the same order as the number of streams
employed in subsequent radiative transfer calculations, i.
e., 20–40) of Gauss–Legendre quadrature roots were used
within each block. We refer to this approach in the
following as the first method of numerical angular inter-
polation (NAI-1). However, borrowing from the analysis of
Domke [9], de Rooij and van der Stap [5] could specify the
exact number of roots of Gauss–Legendre quadrature to be
used for numerical interpolation, leading to a significant
improvement in accuracy. This implementation is referred
to in the following as the second method of numerical
angular interpolation (NAI-2). A more detailed explanation
of NAI-2 is given in Section 4.1.

Noting that the computation of the Fourier components
of the phase matrix involved integrals over the product of
three generalized spherical functions, Domke [9] was the
first to use Wigner 3-j symbols [37], known from the
quantum theory of angular momentum, to evaluate those
integrals. This provided a powerful technique for comput-
ing the Fourier expansion coefficients directly from parti-
cle microphysical parameters without a need for the
intermediate computation of the scattering matrix.

Though Domke0s formalism promised significant gains
in both accuracy and computational efficiency, the original
manuscript by Domke [9] contained several minor but
critical misprints, causing his work to be relegated to

relative obscurity. Many of these misprints were corrected
by de Rooij and van der Stap [5], albeit with the exception
of a central recurrence relationship as well as the expres-
sion for an expansion coefficient. de Rooij and van der Stap
[5] noted that while Domke0s method was twice as fast as
NAI-2 for small particles (0rx≲120, where x¼ 2πr=λ is the
size parameter of a particle of radius r at wavelength λ), its
memory requirements become too large (o8 GB), espe-
cially for computational capacities in 1984, to warrant
fruitful use for most commonly needed size distributions.
Using Domke0s work to specify the exact number of
angular quadrature roots required, de Rooij and van der
Stap [5] concluded that NAI-2 was of more practical use
than Domke0s method.

This work presents in Section 4 a fully corrected and
tested formalism for Domke0s method, with special empha-
sis on the recurrence relationship misprinted in both
manuscripts, [9] and de Rooij and van der Stap [5]. A
derivation of the same has been provided in the Appendix.
A simple alternative implementation of Domke0s method
(PCW) has been developed which eliminates issues invol-
ving memory usage and simultaneously improves speed by
using binary files for the storage of precomputedWigner 3-j
symbols. As a result, we can report a six- to eight-fold
improvement in computational speed compared to NAI-2
for particulate polydispersions. This has been tested for
particle size parameters ranging up to x� 920.

Before proceeding to Domke0s formalism, we begin in
Section 2 with a brief overview of the computation of
optical properties of spherical particles using Mie theory.
Section 3 provides a brief overview of Siewert0s formalism,
before presenting Domke0s corrected formalism in Section
4 and an alternate implementation circumventing memory
issues in Section 4.1. Section 4.1 also includes a brief
explanation of how Domke0s analysis allows the exact
specification of the number of quadrature roots to be used
in NAI-2.

Section 5 showcases a comparison of Domke0s and
Siewert0s formalisms based on speed and accuracy of
computation for different particle sizes. The relative
advantages and disadvantages of each method have been
summarized.

2. Mie computations: a brief overview

Assuming a given size distribution, ρðrÞ, of constant
complex refractive index nr� ıni, Mie theory [35,6,38,1]
provides a means of computing the complex coefficients an
and bn for an individual particle of size r within that
distribution at a given wavelength λ, characterized by the
size parameter x¼ 2πr=λ. an and bn are used to compute
the extinction and scattering cross-sections as functions of
particle size, such that

Cext ¼
2π

k2
∑
1

n ¼ 1
2nþ1ð ÞRe anþbnð Þ and

Cscatt ¼ 2π

k2
∑
1

n ¼ 1
2nþ1ð Þfjanj2þjbnj2g; ð1Þ

where k¼ 2π=λ is the wave number. The scattering matrix
FðξÞ describes the distribution of light scattered by the
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