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a b s t r a c t

A direct collocation meshless (DCM) method with upwind scheme is employed for solving
the radiative transfer equation (RTE) for strongly inhomogeneous media. The trial function
is constructed by a moving least-squares (MLS) approximation. The upwind scheme is
implemented by moving the support domain of MLS approximation to the opposite
direction of each streamline. To test computational accuracy and efficiency of the upwind
direct collocation meshless (named UPCM) method, various problems in 1-D and 2-D
geometries are analyzed. For the comparison, we also present cases of both the DCM
method for the first-order RTE (employed by Tan et al. [1]) and the DCM for the MSORTE
(a new second-order form of radiative transfer equation proposed by Zhao et al. [2]). The
results show that the proposed method is more accurate and stable than the DCM method
(no upwinding) based on both the RTE and MSORTE. Computationally, it is also faster.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The radiative transfer equation (RTE) is an integro-
differential equation widely used in different research areas
to model wave motions such as light propagation through a
turbulent atmosphere, electromagnetic waves propagating
in plasmas, light propagation in biological tissue, or radiative
heat transfer. Although it is a very well-known equation,
analytical solutions are only available for the simplest
problems. Therefore, numerical solutions to the RTE are
necessary in practical applications.

Many numerical methods have been developed to solve
the RTE in semitransparent media in recent years. These
methods can be mainly classified into two kinds. The first
kind of method is based on ray tracing, such as the ray
tracing method [3,4], the zonal method [5,6], the DRESOR
(Distributions of Ratios of Energy Scattered or Reflected)
method [7], the Monte Carlo method [8–10], and the

discrete transfer method [11–13]. These kinds of methods
do not explicitly rely on the differential form of RTE because
the simulation process of these methods is more physically
based and the ray path is analytically determined. However,
these methods have some obvious drawbacks, such as often
being time-consuming even for relatively simple problems,
or being difficult to deal with anisotropic scattering, or
being difficult to be implemented to complex geometries
due to the geometrical shielding. The second kind of
method is based on the discretization of partial differential
equations, such as spherical harmonics approximations
[14,15], discrete ordinate methods (DOM) [16,17], the finite
volume method (FVM) [18,19], the finite element method
(FEM) [20,21], the collocation spectral method [22–24], and
the Meshless method [25–27]. The methods based on the
discretization of partial differential equation have the
advantages of high efficiency and excellent flexibility to
deal with multidimensional complex geometries. However,
these methods suffer much from numerical oscillations in
some cases caused by the convection-dominated property
of the RTE.

The RTE is a first-order partial differential equation in
each angular direction. Compared to the convection-diffusion
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equation, the RTE can be considered as a special kind of
convection-dominated equation without the diffusion term.
As mentioned before, the methods based on the discretization
of partial differential equations may suffer from nonphysical
oscillations in the numerical results, especially for the models
with inhomogeneous media where some regions have very
small/zero extinction coefficient or discontinuous extinction
coefficient. To make the numerical discretization schemes
correctly model the transfer process, two kinds of special
stabilization techniques are often used: (1) transforming the
RTE into a numerical stable equation, for example, the second-
order partial differential equation, and (2) taking various
numerical stabilization schemes, such as upwind scheme or
artificial diffusion which are often used in FDM (finite
difference method), FVM, FEM and the meshless method.

The second-order form of radiative transfer equation
(SORTE) contains second-order derivative terms which are
known to have the characteristic of diffusion and good
numerical properties. Besides, the diffusion term intro-
duced in the analytical transformation process is natural
and consistent with the original first-order equation. In
recent years, three different transformed equations have
been proposed [2,28–32]. One is the even-parity (EPRTE)
formulation of the RTE mentioned in Refs. [28–30] which
is a second-order partial differential equation of the even
parity of radiative intensity. Another is the second-order
radiative transfer equation (SORTE) proposed recently
[31,32] which uses radiative intensity as solution variable
and is more convenient to be applied to the complex
radiative transfer equation, but has some problems in

dealing with inhomogeneous media due to the existence
of the reciprocal of extinction coefficient in the equation.
The third is a new second-order form of radiative transfer
equation (named MSORTE) proposed to overcome the
singularity problem of the SORTE. Zhao et al. [2] applied
a meshless method based on the moving least square
approximation to verify the versatility and performance of
the MSORTE in solving radiative transfer in very strongly
inhomogeneous media, and stable and accurate results
were obtained. Although the three types of SORTE are
more stable than RTE, the iterative solutions of the SORTE
are more time consuming. In addition, compared to the
first-order RTE, SORTE is of higher differentiability of
radiative intensity with respect to the ray trajectory
coordinates, which will limit the application of SORTE.

An alternative approach to reduce the nonphysical
oscillations in the results is the introduction of RTE with
the upwind scheme which can obtain the numerical stable
solutions under less computational cost compared to
SORTE. A number of upwinding schemes have been
developed for FDM, FEM and FVM. It is apparent that the
upwind effect, achieved by whatever means, is needed
only in the direction of flow. However, it is not easy to
design such methods for multidimensional cases. Hughes
and Brooks [33] introduced the ‘Streamline Upwind (SU)
method’ where the artificial diffusion operator was con-
structed to act only in the flow direction. However, the SU
method cannot meet the consistency of the RTE, resulting
in excessively diffuse solutions, and at the cost of accuracy.
Hughes and Brooks [34] proposed an improved upwind

Nomenclature

a coefficients for MLS approximation
a vector of coefficient a
d diameter of the support domain, m
I radiation intensity, W/m2 sr
i, j, k general spatial indices
G incident radiation, W/m2

M number of discrete directions
n unit normal vector
Nsol total number of solution nodes
N nodal basis function
P vector of legendre polynomial
pj legendre polynomial of jth order
q heat flux, W/m2

r distance between points x and xi, m
S source term of the radiative transfer equation
s unit vector in a given direction
t computation time, s
T temperature, K
V solution domain
w weight function
x vector of optical location

Greek symbols

β extinction coefficient, m�1

γ upwind factor
κa absorption coefficient, m�1

κs scattering coefficient, m�1

ε wall emissivity
μm; ηm; ξmdirection cosine in direction, m
λ support domain amplifying factor
s Stefan-Boltzmann constant, W/m2 K4

τ optical length
Φ scattering phase function
Ω vector of radiation direction
Ω solid angle, sr
ω scattering albedo

Subscripts

b black body
i node index
m direction index
j, k legendre polynomial order index
w wall

Superscript

m, m′ direction index
T transposition
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