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ABSTRACT

This review describes and demonstrates the Q-space analysis of light scattering by
particles. This analysis involves plotting the scattered intensity versus the scattering
wave vector q=(4n/\)sin(0/2) on a double log plot. The analysis uncovers power law
descriptions of the scattering with length scale dependent crossovers between the power
laws. It also systematically describes the magnitude of the scattering and the inter-
ference ripple structure that often underlies the power laws. It applies to scattering from
dielectric spheres of arbitrary size and refractive index (Mie scattering), fractal aggre-
gates and irregularly shaped particles such as dusts. The benefits of Q-space analysis are
that it provides a simple and comprehensive description of scattering in terms of power
laws with quantifiable exponents; it can be used to differentiate scattering by particles of
different shapes, and it yields a physical understanding of scattering based on diffraction.

Mie theory

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The scattering of light from particles is an important
method for in situ, non-invasive, real time characteriza-
tion of the scattering particles. Particle size, morphology,
refractive index and concentration can be determined
under the ideal situation in which the scattering magni-
tude and angular distribution are fully characterized and
the inverse problem of using such data to determine these
properties can be solved. However, whereas the task of
calculating the scattering patterns from particles of
known size, shape and refractive index has seen impress-
ive advances, the inverse problem of going from the
scattering back to the particle remains formidable.

Another very important application for light scattering
is to understand the effects of particulate scattering and
absorption in the Earth’s atmosphere on the global envir-
onment. For this application the impressive advances for
calculating scattering from a wide variety of particles
mentioned above can be very useful. However, increasing
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particle complexity requires increasingly complex calcu-
lations which hamper their facile application to the point
where approximations are often applied. Moreover, these
complex solutions yield little or no physical insight into
the scattering process.

Thus it seems that the field of light scattering could
use a new perspective that could quantitatively describe
and differentiate the scatterings from different types of
particles. It could also use a description that would yield a
physical picture of the scattering process, a desire spurred
both by the practical need to predict simply scattering as
new types of particles are encountered, and the more
general motive to understand fundamentally this aspect
of nature.

In this paper I review a method which provides a new
perspective on light scattering. The method is a simple
change in the manner by which to view the angular
scattering patterns. Instead of plotting the scattered
intensity versus the scattering angle, the new perspective
plots the scattered intensity versus the magnitude of the
scattering wave vector, and the plots are made log-log.
This method is not all together new. It has a long history
of application to small angle X-ray and neutron scattering,
however, it was not applied to light scattering until we
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first applied it to Mie scattering from spheres more than a
decade ago [1]. When we did, we discovered patterns in
the scattering that involved power laws that had never
been described before. More work followed both from our
lab [2-6] and others [7-12]. Recent application to random
nonspherical particle geometries [13-15] indicates that
the usefulness of the new perspective might be wide
spread. We call this new perspective “Q-space analysis”.

2. The scattering wave vector

As the name implies, the fundamental variable in the
Q-space analysis is the scattering wave vector q. Thus it is
very appropriate that our description of Q-space analysis
starts with a description of the origin of g in the scattering
theory. We follow the description given in [16]. Consider a
scalar wave incident upon a point-like scattering element,
or scatterer, at 7 as drawn in Fig. 1. Since the scatterer
is point-like, it scatters isotropically throughout space.
The incident field at a position 7 is

E(7)=Eoexp(ik - 7) 1)

where i=,/—1 and ?, is the incident wave vector, with
magnitude \Tg,\ =27/h. The wave scatters in the direction
of E toward the detector at R>r. Then the field at the
detector is a plane wave described by

ER,7) ~ E(T)exp(k s-(R—T)), @)
which with Eq. (1) yields

E(R,7)~Eoexp(i k s- R)exp((K i— k) 7) 3)

We have dropped the equality for the proportionality
because we do not know and do not need to know the
strength of the scattering element at 7. The second term
of Eq. (3) shows that the phase at the detector is a
function of the position of the scattering element and
the vector

G =ki—k )

Eq. (4) defines the scattering wave _vector G . Its direc-
tion is in the scattering plane from ks to k;, and if the
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Fig. 1. Diagram of light with an incident wave vector k ; scattering from
a point scatterer at r into the scattering wave vector k s at an angle 0
directed to a distant detector.

- . . . - - . .
scattering is elastic, i.e. | k;| = | ks, the magnitude of q is
q = 2ksin(0/2) (53)

= (4m/M)sin(0/2) (5b)

where 0 is the scattering angle. Finally, we strip Eq. (3) to
is essentials and write for the amplitude of the scattered
wave

Esca(q, T)~Eoexp(iq - T) (6)

The importance of q is that it describes how the phase
at the detector depends on the position of the scatterer
and the scattering angle. Any finite size object can be
thought of as composed of a great many sub-volumes that
act as point-like scatterers at various T, a system of
scatterers [16,17]. Hence the total scattered wave is the
sum of all the waves from the scatterers that make up the
object. In taking this sum a baseline and very useful
approximation can be made that the scattering from each
individual scatterer of the object is so weak that it does
not affect the other scatterers. Then each scatterer only
sees the incident field and the interior of the scattering
object is uniformly illuminated. This is the so-called
Rayleigh-Gans or Rayleigh-Debye-Gans (RDG) [18-21]
approximation which leads to the total scattered field at
the detector to be

Esca(G)~Eo > exp(iq - 7). @

To convert the sum in Eq. (7) to an integral write the
density function of the system of scatterers as

n(r)=> o(F-7) 8)
where §(7) is the Dirac delta function. Then

S exp(iq-7)= / exp(iq - THn(T)dT )
Thus

Fus(@~Eo [ expq - Ton(F )7 (10)

In Eq. (10) we have anticipated the experimental
situation where scattering will take place from an ensem-
ble of particles of random orientations; thus the vector
nature of q is eliminated. Eq. (10) brings the realization
that the functionality of the scattered wave under the
RDG approximation is the Fourier transform of the real
space structure of the scattering object. Given the reci-
procity of the Fourier transform, it also implies that the
Fourier transform of the wave scattered from the object is
the real space structure functionality of the object. Indeed,
the real space (r-space) and g-space (reciprocal space)
descriptions of the object carry the same information only
in different units.

One may also recognize that Eq. (10) describes diffrac-
tion from the scattering object, so it also brings the
important realization that scattering under the RDG
approximation is simply diffraction [22]. In this context
it depends neither on the electromagnetic character of the
light wave nor the electric properties of the scattering
object as specified by its complex index of refraction.

The intensity of the scattered wave is the square of
the complex scattering amplitude; hence the q-space
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