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a b s t r a c t

Radiative energy and momentum transfer due to fluctuations of electromagnetic fields

arising due to temperature difference between objects is described in terms of the cross-

spectral densities of the electromagnetic fields. We derive relations between thermal

non-equilibrium contributions to energy and momentum transfer and surface integrals

of tangential components of the dyadic Green’s functions of the vector Helmholtz

equation. The expressions derived here are applicable to objects of arbitrary shapes,

dielectric functions, as well as magnetic permeabilities. For the case of radiative transfer,

we derive expressions for the generalized transmissivity and generalized conductance

that are shown to obey reciprocity and agree with theory of black body radiative transfer

in the appropriate limit.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Fluctuations of electromagnetic fields lead to thermal
radiative transfer, via energy transfer, and van der Waals
and Casimir forces, via momentum transfer. Diffraction
and interference effects as well as tunneling of evanescent
and surface waves, collectively known as near-field
effects, are not taken into consideration by the classical
theory of radiative transfer. Near-field effects become
important when the length scale of importance becomes
comparable to the characteristic thermal wavelength
(lT � 3000=T mm). For radiative transfer between two
objects, an important length scale is the minimum inter-
object spacing, lgap. When lgap5lT , tunneling of electro-
magnetic waves lead to enhancement of radiative transfer
beyond the classical or far-field limit. Surface texturing,
for instance by creating a periodic 1D or 2D pattern,
introduces a length scale, lp, that characterizes the period
of the pattern. When lp5lT , diffraction effects can lead to

thermal emission patterns not usually associated with a
planar surface [1].

It has been long recognized that near-field enhance-
ment of radiative transfer due to surface polaritons can
result in increased power density as well as efficiency
[2–5]. However, this enhancement of energy transfer has
not been used in any practical device, as yet, because of
our inability to conceive of configurations other than two
parallel surfaces with a thin vacuum gap in which an
enhancement of similar magnitude occurs. Most investi-
gations of near-field radiative transfer have been
restricted to objects of few simple geometric shapes, each
analyzed by a vector eigenfunction expansion method
applicable to that geometry (planar geometry with vector
plane waves [2,6–10], cylindrical surfaces with vector
cylindrical waves [11], two spheres with vector spherical
waves [12–15], sphere-plane with a combination of vec-
tor spherical and plane waves [16]). Even minor changes
to the shape of the object can impose great challenges.
Simulations of thermal emission from textured surfaces
are usually performed using rigorous coupled wave ana-
lysis (RCWA) [17–19] or finite difference time domain
(FDTD) methods [20], which are quite different from
those used for simulations of near-field radiative transfer.
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To design other types of surfaces that can exploit the
enhancement, without posing the hurdles associated with
two parallel surfaces, and also to design surfaces with
new radiative properties by shape modification at nano/
micro scale, we need a general method to predict all types
of nanoscale effects on radiative transfer, irrespective of
the size, shape or properties of the objects involved.

Kruger et al. [11,21] used fluctuational electrodynamics
to develop a scattering matrix and operator formalism for
computing non-equilibrium force and heat transfer inter-
actions between objects with arbitrary shapes and fre-
quency dependent dielectric permittivities. Biehs et al. [9]
developed a formalism of nanoscale radiative transfer
between two parallel surfaces similar to that of Landauer
formalism of electron transport in mesoscopic devices
[22–25]. Ben-Abdallah et al. [26] used Rytov’s theory to

develop a theoretical formalism for radiative transfer
between many objects in the dipole limit. Messina et al.
[27] proposed a scattering matrix version of nanoscale
radiative transfer as well as dispersion forces that is valid
for objects with arbitrary shapes as well as dielectric
functions. Non-equilibrium fluctuational electrodynamical
interactions between objects can be expressed in a scatter-
ing matrix formalism or in a Green’s functions formalism,
just as the electrical conductance for electron transport can
be developed in terms of the scattering matrix or Green’s
function.

The work in this paper is an extension to a prior work
published in this journal by one of the authors [28].
In Ref. [28], the focus was on the relation between
cross-spectral densities of electromagnetic fields in thermal
equilibrium and the dyadic Green’s functions (DGFs) of the

Nomenclature

E electric field vector
F view factor
G e electric dyadic Green’s function
G m magnetic dyadic Green’s function
G E r � G e

G M r � G m

G o Green’s function of contribution due to back-
ground or source radiation

G
ðscÞ

Green’s function of contribution from waves
scattered by interfaces

Ge linearized conductance for radiative transfer
H magnetic field vector
I identity matrix
J current density
Tl temperature in object l

P poynting vector
Q radiative heat transfer
~Rhn Fresnel reflection coefficients at interfaces

between h and n

Sl closed surface of object l

Te generalized transmissivity for radiative
energy transfer

Tm generalized transmissivity for momentum
transfer

Vl volume of object l

Vd volume of infinitesimal radius surrounding ~r
E matrix of contribution to /EEnSs

H matrix of contribution to /HHnSs

X matrix of contribution to /EHnSs

c speed of light
_ reduced Planck’s constant
k wavevector
kb Boltzmann’s constant
kn n component of wavevector (n¼ x,y,z)
khz z component of wavevector in vacuum
kr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2

xþk2
y

q
l thickness of vacuum gap
n̂ unit normal vector
r position vector of observation point

~r position vector of source point
t time
b 0 or 1
d delta function
q distance of points
E Levi-Civita symbol
e permittivity, e0 þ ie00
eo permittivity of free space
Y energy of a photon at temperature T

m permeability, m0 þ im00
mo permeability of free space
n, x 1 or �1
s Maxwell stress tensor
o frequency
R real part
I imaginary part
Tr trace

Superscripts

bb blackbody
e electric field
m magnetic field
pp planar–planar
(h) vacuum
(l) objects (l¼ 1,2, . . . ,N)
(p) transverse magnetic
(s) transverse electric
ðmÞ polarization s or p

T transpose
n complex conjugate

Subscripts

h vacuum
i, p, q Cartesian components 1,2,3
l objects (l¼ 1,2, . . . ,N)
s symmetric summation
1-2 from object 1 to 2
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