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a b s t r a c t

Optical force acting upon a dielectric microparticle illuminated by a non-diffracting

vortex beam is expressed using the generalized Lorenz–Mie theory (GLMT). Numerical

results are presented for different widths and topological charges of the vortex beam.

We show that such particle may be stably trapped either in the dark center of the vortex

beam, in one of the two stable positions placed off the optical axis, or as the third option

it may circulate along almost circular trajectory having its radius smaller or equal to the

radius of the smallest high intensity vortex ring.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The force interaction between light and a microparticle
results in an optical force which is studied and employed
within the framework of optical micromanipulation tech-
niques [1]. Optical tweezers [2], Raman tweezers [3],
optical cell sorters [4], optical stretchers [5], or optical
pikotenzometers [6] represent the most known examples
of this interaction. The above-mentioned applications
mainly use the transfer of the linear momentum of light
from the Gaussian laser beams to an object. In the case of
more complex spatial light distributions the particle
behavior is strongly determined by its size with respect
to the characteristic field pattern. This phenomenon is
sometimes called ‘‘size-effect’’ and in the case of standing
waves the particle is pushed with its center to the
intensity maximum or minimum depending on its size
[7,8]. However, particles of particular sizes are not pushed
at all and the overall optical force is negligible. Such
strong dependence of the optical force on the particle
size has been employed in passive optical sorting of

microparticles in one- and two-dimensional optical lat-
tices [9–13] because particles of different sizes or com-
positions follow different trajectories across the optical
lattice.

Except the linear momentum, light can posses also
spin and orbital angular momentum [14]. Spin angular
momentum is associated with the polarization of light
[15] and its change, for example due to the light trans-
mittance through a birefringent microobject, results in a
torque rotating the microobject around its axis [16]. The
orbital angular momentum is associated with the spatial
field distribution in an optical vortex beams [14,17]. If an
object is illuminated by such beam, the light scattering
and consequent transfer of the linear and angular
momentum from the vortex beam to an object leads to
the rotation of absorbing particle in the dark center of the
vortex beam [18,19] or orbiting of microparticles around
the beam axis in the high-intensity ring of the vortex
beam [20–32].

In this paper, we focused on the spherical particles of
micrometer sizes illuminated by vortex Bessel beam of
varying beam width and topological charge. We used the
generalized Lorenz–Mie theory [33–42] to calculate the
optical forces acting upon a single particle and to inves-
tigate the particle behavior. In coincidence with the
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previous experimental observations we found that for
certain conditions the particle orbits around the beam
axis in a circle having radius smaller or equal to the radius
of the first bright vortex ring. However, we also found that
non-absorbing particles of certain sizes may be stably
trapped either at the dark spot placed on the vortex beam
axis or at one of the two azimuthal positions placed off
the optical axis.

2. Theoretical Bessel beam description

An ideal Bessel beam is formed by an interference of
the conical bunch of plane waves that all propagate with
their k vectors tilted by an angle a0 toward the optical
axis z [43]. Since all the plane waves have equal axial
component kz of their wave vector k, the angular spec-
trum of the plane waves of this beam is described by the
delta function dða�a0ÞexpðimfÞ where a is the polar
angle, m is an integer number called the topological
charge of the vortex beam and f is the azimuthal angle.
The interference between all the plane waves results in
the radial electric field distribution given by the Bessel
function of the first kind and the m-th order JmðkrrÞ,
where r¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2þy2

p
is the radial distance from z-axis and

kr ¼ k sinða0Þ is the radial component of the wave vector
k. Since the Bessel beam belongs among the group of
propagation invariant optical fields (also called non-
diffracting beams) [44], it keeps the lateral intensity
profile unvarying while propagating along the z-axis. In
the case of the zero-order Bessel beam (m¼0) all the
plane waves interfere on the optical axis in phase and,
consequently, an intensity maximum is created here. In
the case of a higher order Bessel beam ð9m940Þ all the
plane waves are phase shifted with respect to each other
in such a way that the phase shift around the cone is
equal to 2pm. Since the plane waves with all possible
phase shifts interfere on the optical axis, such a destruc-
tive interference creates the intensity minimum along the
optical axis and, therefore, the doughnut or optical vortex
beam is generated.

The ideal Bessel beam would be of infinite transverse
extent and carry infinite amount of energy. Therefore, in
reality only an approximation to this ideal case, called
quasi-Bessel beam (QBB), can be obtained over a limited
axial distance [45]. There are an increasing number of
papers dealing with theoretical aspects of QBBs and
attempting to tune their properties closer to those of an
ideal non-diffracting beams (see for example Ref. [46] and
references therein). We focus here on the Bessel beams
generated by an axicon [47–51]. For the theoretical calcula-
tions let us assume the ideal Bessel beam which is formed
behind the axicon illuminated by the plane wave linearly
polarized along the x-axis. The vector electric field of such
Bessel beam can be described as [52,53]

Eðr,f,zÞ ¼ E0ða0Þe
ikz cos a0 ð�iÞm eimf
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where f is the azimuthal angle and ex,y,z are the base
vectors along x, y, and z Cartesian coordinate axes.

For practical reasons we define the beam width rm of
the vortex beam with 9m940 using the radius of the first
maximum of the intensity in the radial direction, obtained
from dJmðkrrmÞ=drm ¼ 0. The beam width rm can be
related to the radius r0 of the first intensity minimum in
the radial direction of the zeroth order Bessel beam using
J0ðkrr0Þ ¼ 0. For the topological charges up to 3 we obtain
r1 ¼ 0:7656r0, r2 ¼ 1:27r0, r3 ¼ 1:747r0 where [38]

r0 ¼
2:4048

kr
¼

2:4048

k sinða0Þ
: ð2Þ

The power carried by the BB core (for m¼0) or the
innermost high intensity BB ring (for m¼ 71,72, . . .)
can be expressed in the paraxial case [38] as

Pm,coreC�
pkE2

0r2
0

2om0

s2
m

s2
0

Jm�1ðsmÞJmþ1ðsmÞ, ð3Þ

where o is the light angular frequency, m0 is the vacuum
permeability, sm is the first off-axis root of the
Bessel function of the m-th order (e.g. s0 ¼ 2:4048,
s1 ¼ 3:8317, s2 ¼ 5:1356, etc.). The minus sign in Eq. (3)
is compensated by opposite signs of Jm�1ðsmÞ and
Jmþ1ðsmÞ. Therefore, the power carried by the central ring
of the BB of topological charge m¼1 is 1.53�bigger than
the power carried by the zeroth order BB. In the case
of higher topological charges we obtain P2=P0 ¼ 1:95,
P3=P0 ¼ 2:32.

For all the calculations presented in this paper we
determine the value of the electric field intensity E0ðaÞ
from the same power P0,core ¼ 5 mW carried by the central
core of the zeroth order Bessel Beam independently on
the core radius.

3. Optical force

To express the optical force acting upon a spherical
dielectric particle placed into the BB we use the Lorenz–Mie
approach [33,37,38]. Inspired by the work of Taylor [54] we
have expressed the scattered field coefficients Aln and Bln

analytically for the vortex BB. It has shortened the compu-
tation time in the Matlab environment tremendously.

3.1. Analytical form of the scattering coefficients

Let us consider a spherical particle of radius a placed
into electromagnetic field having an electric field inten-
sity given by Eq. (1), i.e. into the optical vortex of
topological charge m. The sphere is located with its center
in Cartesian coordinates x0,y0,z0 (corresponding cylindrical
coordinates are r0,f0,z0). Following the classical approach
of the light scattering by a spherical object, the scattered
field can be expressed using the expansion into the
spherical harmonic functions Yln. The coefficients Aln

and Bln of such expansion for electric field and magnetic
fields of the higher order Bessel beam, respectively,
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