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a b s t r a c t

General models are developed to describe in-line digital phase contrast experiments.

They link analytically the reconstruction process and the different parameters of the

set-up. Reconstructions of phase discontinuities are realized using 2 Dimensional-

Fractional Fourier Transforms (2D-FRFT). They give the 3D position and the dimension

of the phase object, and the phase shift introduced. Experimental results and simula-

tions are in good concordance. The technique can be used with monochromatic or with

large spectrum laser sources.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

Digital holography has important potentiality for the
characterization of particles, powders and flows, and the
number of applications has grown intensively in the last
decade (see for example [1,2]). In this field of research, the
elaboration of scalar diffraction models that can describe
a whole imaging set-up is particularly attractive for the
realization of in situ measurements. Using a generalized
Huygens-Fresnel formalism, we could describe complex
systems and perform measurements of microflows in
micropipes [3]. Unfortunately, the differentiation of
absorbing objects from purely phase objects remains
difficult. Digital in-line holography gives classically the
diameter of the object and its 3D position. In phase
contrast experiments, a third fundamental parameter
needs to be determined: the phase shift introduced by
the object. Thus, much work has to be done to distinguish
precisely opaque objects from purely transparent and
more generally from partially transparent phase objects.
The analysis of phase objects using digital phase contrast

has received much attention since pioneer work of [4].
Recently, we could propose an in-line configuration, with
original reconstruction of the phase objects using 2
Dimensional Fractional-order Fourier Transformations
(2D-FRFT) [5]. To extend the domain of applications of
this technique, the elaboration of global models that can
describe any set-up represents an important challenge. It
should give the opportunity to predict a wide variety of
systems: from configurations in microscopy to the visua-
lization through anamorphic systems as cylindrical pipes
or micropipes. Such models have been developed in
Continuous Wave (CW) and femtosecond regimes for
the reconstruction of circular opaque objects in digital
holography [6,7]. We present in this work the extension of
these formalism based on generalized Huygens-Fresnel
integrals to the description of digital phase contrast
experiments. The imaging system will be described in
terms of transfer matrices, in order to describe any in-line
configuration. Different regimes of operation will be
described: from CW regime in Sections 2 and 3, to sources
with large spectrum as femtosecond lasers in Section 4.
Our models will link analytically the process of recon-
struction (fractional orders of the transforms to be
applied, magnification factors) to the different parameters
of the set-up (nature and position of the optical elements)
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and the characteristics of the phase object under investi-
gation. The phase objects that we will consider are made
of transparent, homogeneous, isotropic materials, and the
polarization of the incident laser light has no influence on
the diffraction patterns produced. We will thus consider a
scalar model to describe the propagation of the electric
field. Experimental results will be presented to validate
the models. The potentiality of the method for the
reconstruction of transparent phase objects through
cylindrical systems, or the reconstruction of non-
spherical objects will be further detailed.

2. Digital phase contrast in CW regime

2.1. Expression of the diffracted field in the plane of the CCD

sensor

We consider the general configuration of Fig. 1. A
monochromatic Gaussian beam (whose waist dimension
is w0 in the plane z¼0) propagates through the first part of
a general system along the z-axis. This part is described by
transfer matrices Mx

1 and My
1, along both transverse x- and

y-axes. The beam is then diffracted by a transparent phase
object. This dephasing area will consist in a circular thin
film of ITO (Indium Tin Oxide) of diameter D, deposited on a
silica substrate, in the experiments. The phase shift intro-
duced at the wavelength l is noted j. The losses (absorp-
tion) induced by the diffracting element are negligible. The
diffracted beam propagates then through the second part of
the system (from the phase object to the CCD sensor,
described by transfer matrices Mx

2 and My
2). Let us establish

the expression of the diffracted field in the plane of the CCD
sensor. The first step consists in calculating the expression
of the field that is diffracted in the plane where the
diffracting element is located (z¼ ‘1). It is calculated using
the generalized Huygens-Fresnel integral [8–10, 6]:
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where x and Z are the transverse coordinates in the plan of
the phase object, E0ðx,y,0,oÞ is the electric field of the
incident Gaussian beam, n‘1

‘1 is the optical pathway, and
the different Ap

1, Bp
1, Cp

1, Dp
1 (with p¼x or p¼y) are the

coefficients of the transfer matrix between the plane of the

beam waist (z¼0) and the plane of the diffracting element
(z¼ ‘1). This approach allows to describe cylindrical geo-
metries introducing different matrices along the x- and y-
directions. The second step consists in calculating the field
diffracted by the phase object in the plane where the image
is recorded (on the CCD sensor). In a similar way, it is
obtained by the following integral:
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where D is the diameter of the phase object, and where the
function Tðx,ZÞ is a circular disk function in the case of a
circular phase object which equals 1 within a disk of radius
D=2 and 0 otherwise. Expanding Tðx,ZÞ over a basis of
Gaussian functions (see Appendix A), the integral of Eq. (2)
gives after evaluation:
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o exp i
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R is the field that would be obtained in the plane of the
CCD sensor in the absence of the phase plate. O is the field
that would be transmitted by a circular aperture of radius
D=2. These terms can be expressed as functions of the
different coefficients Ap

2, Bp
2, Cp

2, Dp
2 (with p¼x or p¼y) that

are the coefficients of the transfer matrices between the
plane where the diffracting element is located and the
plane of the CCD sensor, and the different characteristics of
the incident beam and the phase plate (see Appendix A and
references therein).

2.2. Principle of digital reconstruction by fractional Fourier

transformation

The mathematical definition of the 2D-FRFT is given in
Refs. [11–13]. We consider the 2D-FRFT of orders ax along
the x-axis and ay along the y-axis of a 2D-function Iðx,yÞ
(i.e. an image). The exact formulation that we use can be
found in Appendix B and in Refs. [6,5]. The kernel of this
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Fig. 1. Experimental set-up.
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