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a b s t r a c t

An ultrafast line-by-line algorithm for calculating spectral transmittance and radiance of
gases is presented. The algorithm is based on fast convolution of the Voigt line profile
using Fourier transform and a binning technique. The algorithm breaks a radiative transfer
calculation into two steps: a one-time pre-computation step in which a set of pressure
independent coefficients are computed using the spectral line information; a normal
calculation step in which the Fourier transform coefficients of the optical depth are
calculated using the line of sight information and the coefficients pre-computed in the
first step, the optical depth is then calculated using an inverse Fourier transform and the
spectral transmittance and radiance are calculated. The algorithm is significantly faster
than line-by-line algorithms that do not employ special speedup techniques by a factor of
103–106. A case study of the 2.7 μm band of H2O vapor is presented.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Various radiative transfer (RT) models have been devel-
oped in the last a few decades for numerical calculation of
spectral transmittance and radiance of gases. These numerical
models are generally classified into two major categories,
line-by-line (LBL) models e.g., [1–9] and band models,
depending on whether the real spectral lines of the gases
are directly used or a set of band parameters derived from the
line information of the gases are used in the calculation.
Although band models are several orders of magnitudes
faster than LBL models, they suffer from the accuracy
problem that is inherent within the statistical framework of
these models. Moreover, using band models for an inhomo-
geneous line of sight (LOS) requires more approximations
that further reduce their accuracy.

As a consequence of the rapid advance of computational
power in the past two decades, LBL models have received
many applications due to their high accuracy. In order to

reduce computational cost, modern LBL models generally
make use of some sort of speedup techniques while calcu-
lating the line function. This includes, for example, decom-
position of the line function into sub-functions spanning
finite domains e.g., [4–6], interpolation over regions where
the line function varies slowly e.g., [7–9], and use of
approximate but easy-to-evaluate functions to represent
the line function e.g., [10–13]. In spite of all the efforts, LBL
models are still notoriously slow while dealing with pro-
blems in which large number of spectral lines are involved.
For example, in modeling molecular emission from plasma,
rocket plume, or atmospheric emission of hot gas giants, the
number of spectral lines can easily exceed hundreds of
millions or even billions. Under these conditions, LBL models
quickly become prohibitively expensive.

In this paper, we describe a new LBL model that is
dramatically faster than any existing LBL models and is
comparably to band models in speed. This model still
calculates the optical depth line by line but it does so in
the Fourier transform space. It achieves the unprecedented
speed by separating out the computationally expensive
line-by-line calculation into a one-time pre-computation
step in which a set of pressure-independent coefficients
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are calculated and stored in computer disk. A normal RT
calculation requires only minimal calculations using these
pre-computed coefficients and an inverse Fourier transform.

This paper is organized as follows. The theoretical
framework of the model is given in Section 2. The time
complexity and accuracy considerations are analyzed in
Section 3. A case study using the new model for the 2.7 μm
band of H2O vapor is presented in Section 4. Further
discussions are presented in Section 5. We will use the
term “algorithm” rather than “model” hereafter in the
paper to refer to the new LBL algorithm since it is
presented in a way that can be directly implemented into
a computer program.

2. Theoretic framework

Solutions to the equation of radiative transfer [14] for
calculating spectral transmittance and radiance require cal-
culation of the optical depth as a function of the path though
the LOS. In numerical approaches, this calculation is decom-
posed into calculations of the optical depth through a
number of homogenous segments along the LOS. Within
each of these LOS segments, temperature, pressure, and gas
mole fractions are assumed to be uniform. In a LBL model,
the wavelength-dependent optical depth for a gas mixture in
a homogeneous segment is given by

τð~ν; T ; P;U1;U2;…;UNs Þ ¼ ∑
Ns

α
Uα ∑

Nα

i
Sα;iVðsα;i; γα;i; ~ν−~να;iÞ ð1Þ

where τð~ν; T ; P;U1;U2;…;UNs Þ is the optical depth that
depends on the wavenumber ~ν, temperature T and total
pressure P, and the column densities U1;U2;…;UNs of the Ns

gas species in the segment; Sα;i is the line strength for the ith
line of gas α that has Nα lines in total; Vðsα;i; γα;i; ~ν−~να;iÞ is the
Voigt line profile for the ith line of gas α whose central
wavenumber is ~να;i; sα;i and γα;i are the Doppler width and
the collision broadened half width (HWHM) for the ith line
of gas α, respectively.

The Doppler width sα;i is given by

sα;i ¼
ffiffiffiffiffiffiffiffi
kBT
mα

s
~να;i
c

ð2Þ

where kB is the Boltzmann constant, c is the speed of light in
the vacuum, and mα is the molecular mass of the gas α.
The collision broadened width γα;i of the same line is given by

γα;i ¼ γa0α;ið1−rαÞ
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where γa0α;i and γs0α;i are the air- and self-broadened half widths
for the ith line of gas α at the reference temperature T0 and
pressure P0, respectively; rα is the mole fraction of the gas
species; na

α;i and ns
α;i are temperature-dependent exponents

for the air- and self-broadened widths for the ith line of gas α,
respectively.

The line strength Sα;i in Eq. (1) is given by

Sα;i ¼ S0α;i
Q0

α

QαðTÞ
exp −c2Eα;i

1
T
−

1

T0

� �� �
1−expð−c2 ~να;i=TÞ
1−expð−c2 ~να;i=T0Þ

" #

ð4Þ

where S0α;i is the line strength at the reference tempera-
ture; Q0

α and QαðTÞ are the total partition functions of the
gas species at the reference temperature T0 and the
temperature of T, respectively; Eα;i is the total lower state
energy of the spectral line; c2 is a constant that equals to
hc=kB, where h is the Planck constant.

Instead of calculating the optical depth using Eq. (1)
directly, which requires a lot of computational power
when Nαs are large (e.g., 4108 while dealing with mole-
cular transmission and emission problems at temperatures
higher than 1000 K for common atmospheric species such
as H2O, CO2, NH3, etc.), we seek a solution to Eq. (1) in
Fourier transform space and exploit properties of such a
solution for dramatic speed improvement. Eq. (1) can be
easily rewritten in Fourier transform space using the
convolution theorem, as shown by Mendenhall [15]:

~τðk; T ; P;U1;U2;…;UNs Þ ¼ ∑
Ns

α
Uα ∑

Nα

i
Sα;iexpð−sα;i2k2−γα;ijkj−ik~να;iÞ

ð5Þ
where k is the Fourier transform variable of wavenumber ~ν. If
the LOS information (i.e., T ; P;U1;U2;…;UNs ) and the spectral
line information (i.e., Sα;i for all lines of all species) are known,
one can sum over all the terms in the right side of Eq. (5) to
get the Fourier transform coefficients of the optical depth and
then performs an inverse Fourier transform to get the real
optical depth. Note that Eq. (5) is exactly correct, and in
practice one has to use an approximate discrete Fourier
transform such as the fast Fourier transform (FFT) to calculate
Eq. (5). Although this FFT based approach is much faster than
the calculation of Eq. (1) directly, the summation over all
spectral lines in Eq. (5) is still very computationally expensive
when Nαs are large.

Note that the left side of Eq. (5) is a function of
temperature and total pressure. While temperatures for
common RT problems vary from a few K to a few thousand
K, the total pressures could vary in a much wider range
(e.g., 10−1–108 Pa). The dependence of ~τðk; T ; P;U1;U2;…;UNs Þ
on temperature can be easily treated with a relatively
small temperature grid and with interpolation. It is the
pressure dependence of ~τðk; T ; P;U1;U2;…;UNs Þ that makes
it difficult for us to employ a pre-computation technique to
boost performance. To overcome this difficulty, we employ
a low-resolution binning (LRB) technique. The principle of
LRB is to bin the pressure-entangled quantities in Eqs. (3)
and (5) (i.e., γa0α;i , γ

s0
α;i, n

a
α;i, and ns

α;i) so that we can factor
pressure-related terms out of the last summation in Eq. (5)
and enable a pre-computation approach.

By applying LRB to the temperature-dependent expo-
nents na

α;i and ns
α;i, we assume that these quantities take

values only from a number of preset bin values. In the
extreme case where there is only one bin, we have

na
α;i ¼ na

α ; ð6Þ
and

ns
α;i ¼ ns

α ð7Þ
where na

α and ns
α are the average temperature-dependent

exponents for the air- and self-broadening for gas α, respec-
tively. This special case of LRB is called the average
temperature-dependent pressure-broadening approximation
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