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a b s t r a c t

The extended boundary condition method (EBCM) and invariant imbedding method

(IIM) are two fundamentally different T-matrix methods for the solution of light

scattering by nonspherical particles. The standard EBCM is very efficient but encounters

a loss of precision when the particle size is large, the maximum size being sensitive to

the particle aspect ratio. The IIM can be applied to particles in a relatively large size

parameter range but requires extensive computational time due to the number of

spherical layers in the particle volume discretization. A numerical combination of the

EBCM and the IIM (hereafter, the EBCMþ IIM) is proposed to overcome the aforemen-

tioned disadvantages of each method. Even though the EBCM can fail to obtain the T-

matrix of a considered particle, it is valuable for decreasing the computational domain

(i.e., the number of spherical layers) of the IIM by providing the initial T-matrix

associated with an iterative procedure in the IIM. The EBCMþ IIM is demonstrated to

be more efficient than the IIM in obtaining the optical properties of large size parameter

particles beyond the convergence limit of the EBCM. The numerical performance of the

EBCMþ IIM is illustrated through representative calculations in spheroidal and cylind-

rical particle cases.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In a turbid medium, electromagnetic wave interactions
with dielectric particles create many interesting physical
problems. The light scattering by ice crystals and aerosols
in the atmosphere, by particulates in oceanic waters, and
by cells in biophysical systems are some of the better-
known examples [1]. The particles are, more often than
not, nonspherical and the particle size can range from a
few microns to hundreds or even thousands of microns
(e.g., large ice crystals). A common research topic

regarding light–particle interaction system is to use
Maxwell’s equations to obtain the single-scattering prop-
erties of nonspherical particles in a wide range of particle
size parameters (ratio of particle size to incident wave-
length), which include Rayleigh, resonant, or geometric
optics regimes. The T-matrix methods are among the
most accurate of the various computational methods
and can obtain the widest size parameter range (up to
geometric optics regimes) of particle optical properties for
axially symmetric particles, e.g., spheroids or circular
cylinders.

Few numerical methods are available to compute the
T-matrix in the T-matrix formulation of light scattering.
The extended boundary condition method (EBCM), or
Waterman’s T-matrix method, initially proposed by
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Waterman [2,3] and later developed by Barber and Hill
[4], Mishchenko et al. [5], and others has been popular in
solving light scattering by nonspherical axially symmetric
particles. In principle, the EBCM is applicable to particles
of arbitrary shapes and sizes; however, the method can
suffer from computational issues (e.g., [6]). One computa-
tional issue limiting the applicability of the EBCM is the
ill-condition problem in inverting the so-called Q-matrix.
Several attempts to circumvent or partially solve the ill-
condition problem involved in the standard EBCM have
been reported in the literature. For example, Mishchenko
and Travis [7] found that the numerical implementation
of the EBCM with extended precision variables instead of
that with double precision variables could increase the
maximum convergent size parameter by factors of two or
three; Doicu et al. [8] developed the nullfield method with
discrete sources to combine the advantages of the null
field method and the method of discrete sources; Yan
et al. [9] transformed the long circular cylinder single-
body scattering problem into a ‘‘multi-body’’ scattering
problem in terms of small cylinders; Kahnert and Rother
[10] proposed a perturbation approach to obtain the Q-
matrix inversion, and, Kahnert [11] reported that group
theory could solve the numerical-ill condition problem
using irreducible representations of finite groups. Further
efforts to ameliorate EBCM numerical convergence pro-
blems are documented in Refs. [12–14].

Unlike the EBCM-related T-matrix methods, based on
surface-integration equations, the invariant imbedding
method (IIM) originates from an electromagnetic volume
integral equation and iteratively obtains the T-matrix
from the origin of the coordinate system by growing the
scattering volume incrementally in a shell-by-shell man-
ner. Johnson [15] first applied the IIM to solve the
electromagnetic scattering by dielectric particles, and
the present authors revisited the IIM based on state-of-
the-art numerical implementation [16]. Numerical results
show that the IIM is applicable to particles with large size
parameters and extreme aspect ratios. In comparison with
the EBCM, the IIM is less efficient because of the poten-
tially large number of differential spherical shells
required to discretize large sized particle volumes. To
reduce the IIM computational time, the starting point of
the iterative procedure can be chosen at the inscribed
sphere rather than the origin, and the T-matrix of the
inscribed sphere can be easily obtained by the separation
of variables (SOV) method (i.e., the Lorenz–Mie theory). A
combination of the SOV and the IIM (hereafter, SOVþ IIM)
applied to large spheroids and cylinders beyond the
EBCM’s convergence limit has been reported by Bi et al.
[16]. Note, although the IIM or IIMþSOV is applicable to
cases that the EBCM can handle, the EBCM is much faster
and, thus, is recommended for practical numerical
calculations.

Below we explore a numerical combination of the
EBCM and the IIM to solve the light scattering by
nonspherical particles in the regions where the EBCM is
inapplicable. The basic principle is to employ the EBCM to
further increase the starting position of the iterative
procedures (see Section 2) involved in the IIM. Although
the EBCM is unable to obtain the T-matrix of the whole

particle, the T-matrix is calculated for a partial volume of
the particle whose surface is treated as a new initial
position in the IIM. Some modifications to the EBCM have
been reported in the literature, but we choose to only
consider the standard EBCM outlined by Mishchenko et al.
[5]. For simplicity, we use the EBCM code with double
precision variables and LU-factorization. Furthermore, we
only consider spheroids and cylinders, although the
EBCMþ IIM can be applied to other geometries if the
computational domains of the EBCM and the IIM are
properly identified.

The paper is organized into four sections: Section 2 is a
description of the EBCM and the EBCMþ IIM; Section 3
discusses some representative numerical results; and,
Section 4 is a summary of our study.

2. Method

Fig. 1 is a schematic diagram of the EBCMþ IIM applied
to spheroids and cylinders. The EBCM is applied to the
geometry within a sphere of radius r0 whose surface is
composed of patches on the sphere and the considered
nonspherical particle. According to the EBCM, the T-
matrix at r0 is given by [5]

Tðr0Þ ¼�ðRgQ ÞQ
�1
: ð1Þ

In the framework of the IIM, the T-matrix of the p-
layer inhomogeneous spherical particle is given by [15,16]

TðrpÞ ¼Q 11ðrpÞþ½IþQ 12ðrpÞ�½I�Tðrp�1ÞQ 22ðrpÞ�
�1Tðrp�1Þ½IþQ 21ðrpÞ�,

ð2Þ

where Tðrp�1Þ is the T-matrix at the shell of rp�1, where p

is ranging from 1 to N (rN indicates the circumscribed
spherical surface). For brevity, the definitions of the
quantities RgQ , Q in Eq. (1) and Q 11, Q 12, Q 21, and Q 22

in Eq. (2) will not be addressed and the reader is referred
to Refs. [5,16]. Note that r1 is equal to r0 and indicates the
same spherical surface.

The EBCMþ IIM combination is based on two premises:
(1) the EBCM fails at the size parameter of the concerned
particle; and, (2) the EBCM works for a partial volume of
spheroids and cylinders within the sphere of radius r,
which is most often the case, because the maximum
convergence size parameter for a near-spherical particle
is relatively larger than that of a particle with an extreme
aspect ratio. In addition to the fact that the EBCMþ IIM can
be applied to large sized particles, two byproducts are
available: (1) the refractive index of the particle volume
shaded in Fig. 1 whose T-matrix is computed by the EBCM
can be different from the refractive index of the remaining
volume where the IIM is involved in the computation; and,
(2) the EBCMþ IIM yields the optical properties of a series
of nonspherical particles created by the intersection
between a spheroid or a cylinder and multiple spherical
surfaces specified by rp (0rprN).

In the numerical computations, the intersection curve
of spherical shells and the considered nonspherical parti-
cles must be identified. To be more specific, the range of
the polar angle cosine [m1, m2] that indicates the spherical
surface within the dielectric particle is required (see e.g.,
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