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This paper concerns scattering of an electromagnetic wave by a bounded object located

inside a parallel plate waveguide. The exciting field in the waveguide is either an

arbitrary source located at a finite distance from the obstacle or a plane wave generated

in the far zone. In the latter case, the generating field corresponds to the lowest

propagating mode (TEM) in the waveguide. The analytic treatment of the problem relies

on an extension of the null field approach, or the T-matrix method, originally developed

by Peter Waterman, and later generalized to deal with objects close to an interface.

The present paper generalizes this approach further to deal with obstacles inside a

parallel plate waveguide. This problem shows features that reflect both the two-

dimensional geometry and the three-dimensional scattering characteristics. The analysis

is illustrated by several numerical examples.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Recent theoretical progress in the development of useful
scattering identities – sum rules [1–4] – have initiated
several attempts to verify these identities experimentally
[4–9]. These sum rules relate the dynamical behavior of the
scattering and absorption behavior of the scatterer to the
static properties of the scatterer (polarizability dyadics).

The scattering identities have successfully been ver-
ified in free space [5–8]. In many respects, the parallel
plate waveguide shows a more controlled environment
for these measurements. Initial investigations show that
this geometry is accessible [4,9]. A detailed investigation
of the static properties of an obstacle between two
parallel plates has also been reported recently [10].

The complexity of the solution increases dramatically
if an obstacle is introduced in the waveguide. In the
vicinity of the scatterer, the scattered field behaves
as a solution of a three-dimensional scattering problem.

However, far away from the scatterer, the field does not
decline as 1=r, as it does for a three-dimensional problem,
but vanishes as 1=

ffiffiffiffirp , where the distance to the vertical
axis is denoted r. Nevertheless, far away from the
scatterer, the problem is still a three-dimensional scatter-
ing problem, since there are variations in the fields in the
vertical direction. Only at frequencies below the first
cutoff frequency, defined by k0d¼ p, where k0 is the wave
number in vacuum, and d is the distance between the
plates, the problem is two-dimensional, in that there are
no variations in the vertical direction of the fields below
this frequency.

The presence of the parallel plates is usually solved by
the introduction of an appropriate Green’s dyadic [11].
However, in this paper, we do not pursue this line of
solution technique further. Instead, we use the free space
Green’s dyadic, and solve the problem with parallel plates
and scatterer simultaneously. The entire solution employs
the integral representation of the solution. This integral
representation approach to solve the scattering problem
was originally introduced by Peter Waterman [12], and it
has proven to be a very powerful and useful technique to
solve a large variety of scattering problems, not only
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electromagnetic, but also acoustic and elastodynamic
problems. In fact, the present geometry is an extension
of the results with buried obstacle close to a planar
interface—layered or not [13–20]. Similar technique to
solve the electromagnetic scattering problem by obstacles
inside a cylindrical waveguide has also been reported [21].

The results presented in this paper are inclined toward
microwave applications. There are, however, no such
limitations in the results. The technique applies equally
well to applications at higher frequencies, e.g., THz and IR,
such as the computation of the scattering effects of
impurities in thin films etc.

2. Formulation of the problem

A finite scatterer with bounding surface Ss defines the
region Vs. Two infinite, perfectly conducting planes, Sþ
and S�, confine the two disjoint regions Ve and Vs, see
Fig. 1. These planes are parameterized by z¼ zþ and
z¼ z�, respectively, and without loss of generality, it is
assumed that zþ40 and z�o0. The location of the origin
O is arbitrary, but it is important for the analysis that it is
located somewhere in Vs. The regions above Sþ and
below S� are denoted by V þ and V�, respectively.
The sources of the problem are assumed to be located in
V i � Ve, between the surfaces Sþ and S�.

To proceed, the time-harmonic electric and magnetic
fields satisfy the free-space Maxwell equations in Ve

(we use the time convention expf�iotgÞ,

r � EðrÞ ¼ ik0Z0HðrÞ

r � Z0HðrÞ ¼ �ik0EðrÞ
r 2 Ve

(
ð1Þ

where k0 ¼o=c0 and Z0 are the angular wave number and
wave impedance in free space, respectively. The boundary
conditions on the bounding surfaces are

ẑ � EðrÞ ¼ 0, r 2 Sþ [ S�

m � EðrÞ ¼ 0, r 2 Ss

(
ð2Þ

The scatterer Vs is here assumed to be a perfectly
conducting body. This assumption can easily be relaxed,
see below. With an appropriate radiation condition in Ve

at large lateral distances, Eq. (1) has a unique solution.

2.1. Integral representation of the solution

Let Ei denote the incident electric field with sources
located in Ve, and define the scattered electric field as

Es ¼ E�Ei. The incident field Ei is the field with no
obstacle or plates present. With the directions of the unit
normals defined as in Fig. 1, the solution of (1) and (2)
satisfies the surface integral representation [22]

�
1

ik0
r � r �

ZZ
Sþ [S�[Ss

Geðk0,9r-r09Þ � Kðr0Þ dS0
� �

¼
EsðrÞ, r 2 Ve

�EiðrÞ, r 2 V þ [ V� [ Vs

(
ð3Þ

where K ¼ m � Z0H, and the electric Green’s dyadic

Geðk0,9r-r09Þ ¼ I3þ
1

k2
0

rr

 !
eik09r-r09

4p9r-r09

The integral representation also contains a surface inte-
gral evaluated at large lateral distances, but proper radia-
tion conditions at large lateral distances make this
integral vanish. This surface integral representation is
the starting point in the null-field approach.

3. Basis functions and expansions

3.1. Spherical vector waves

We introduce the out-going or radiating spherical
vector waves, unðkrÞ, defined as [23] (utsmlðkrÞ ¼ utnðkrÞ
¼ unðkrÞ)

u1nðkrÞ ¼ hð1Þl ðkrÞA1nðr̂Þ

u2nðkrÞ ¼
ðkrhð1Þl ðkrÞÞ0

kr
A2nðr̂Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ1Þ

p hð1Þl ðkrÞ

kr
A3nðr̂Þ

8><
>:
and regular spherical vector waves vtsmlðkrÞ as

v1nðkrÞ ¼ jlðkrÞA1nðr̂Þ

v2nðkrÞ ¼
ðkrjlðkrÞÞ0

kr
A2nðr̂Þþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ1Þ

p jlðkrÞ

kr
A3nðr̂Þ

8><
>:
where jl(kr) and hð1Þl ðkrÞ denote the spherical Bessel func-
tions and the spherical Hankel functions of the first kind,
respectively, and where the vector spherical harmonics
are denoted Atsmlðr̂Þ ¼Atnðr̂Þ ¼Anðr̂Þ, r̂ ¼ r=9r9. The index
n is a multi-index that consists of three or four different
indices, i.e., n¼ sml or n¼ tsml, depending on the con-
text, where t¼ 1,2,3, s¼ e,o, m¼ 0,1,2, . . . ,l, and
l¼ 1,2,3, . . .. Their definitions are

A1nðr̂Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ1Þ
p r � rYnðr̂Þ

� �
¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðlþ1Þ

p rYnðr̂Þ � r

A2nðr̂Þ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lðlþ1Þ
p rrYnðr̂Þ

A3nðr̂Þ ¼ r̂Ynðr̂Þ

8>>>>>><
>>>>>>:
The spherical harmonics, Ynðr̂Þ ¼ Ysmlðy,fÞ, are defined
by [23]

Ysmlðy,fÞ ¼ ClmPm
l ðcos yÞ

cos mf
sin mf

( )

Fig. 1. The geometry of the direct scattering problem with two perfectly

conducting planes Sþ and S� and a scatterer with bounding surface Ss.
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