ELSEVIER

Contents lists available at SciVerse ScienceDirect

Journal of Quantitative Spectroscopy & Radiative Transfer

journal homepage: www.elsevier.com/locate/jqsrt

Influence of thermal radiation on soot production in Laminar axisymmetric diffusion flames

R. Demarco^a, F. Nmira^b, J.L. Consalvi^{c,*}

- a Departamento de Industrias, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso, Chile
- ^b EDF R&D, 6 quai Watier, 78400 Chatou, France
- ^c Aix-Marseille University, IUSTI/UMR CNRS 7343, 5 rue E. Fermi, 13453 Marseille Cedex 13, France

ARTICLE INFO

Article history: Received 29 November 2012 Received in revised form 2 February 2013 Accepted 7 February 2013 Available online 21 February 2013

Keywords: Axisymmetric laminar diffusion flame Soot radiation Gas radiation Optically-thin approximation Radiative property models

ABSTRACT

The aim of this paper is to study the effect of radiative heat transfer on soot production in laminar axisymmetric diffusion flames. Twenty-four C₁-C₃ hydrocarbon-air flames, consisting of normal (NDF) and inverse (IDF) diffusion flames at both normal gravity (1 g) and microgravity (0 g), and covering a wide range of conditions affecting radiative heat transfer, were simulated. The numerical model is based on the Steady Laminar Flamelet (SLF) model, a semi-empirical two-equation acetylene/benzene based soot model and the Statistical Narrow Band Correlated K (SNBCK) model coupled to the Finite Volume Method (FVM) to compute thermal radiation. Predictions relative to velocity, temperature, soot volume fraction and radiative losses are on the whole in good agreement with the available experimental data. Model results show that, for all the flames considered, thermal radiation is a crucial process with a view to providing accurate predictions for temperatures and soot concentrations. It becomes increasingly significant from IDFs to NDFs and its influence is much greater as gravity is reduced. The radiative contribution of gas prevails in the weakly-sooting IDFs and in the methane and ethane NDFs, whereas soot radiation dominates in the other flames. However, both contributions are significant in all cases, with the exception of the 1 g IDFs investigated where soot radiation can be ignored. The optically-thin approximation (OTA) was also tested and found to be applicable as long as the optical thickness, based on flame radius and Planck mean absorption coefficient, is less than 0.05. The OTA is reasonable for the IDFs and for most of the 1 g NDFs, but it fails to predict the radiative heat transfer for the 0 g NDFs. The accuracy of radiative-property models was then assessed in the latter cases. Simulations show that the gray approximation can be applied to soot but not to combustion gases. Both the non-gray and gray soot versions of the Full Spectrum Correlated k (FSCK) model can be then substituted for the SNBCK with a reduction in CPU time by a factor of about 20 in the latter case.

 $\ensuremath{\text{@}}$ 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Axisymmetric laminar diffusion flames, including normal and inverse coflows as well as flames burning in still air,

constitute relevant model flame systems for obtaining insights into soot production processes. In particular they offer tractable configurations for analysis and experiments and the results can be projected onto practical turbulent flames using approximate approaches such as the laminar flamelet concept. These configurations were naturally considered in order to validate soot models [1–10] and to investigate the influence of different parameters on soot

^{*}Corresponding author. Tel.: +33 491 106 831; fax: +33 491 106 969.

E-mail address: Jean-Louis.Consalvi@polytech.univ-mrs.fr

Nomenclature	z	axial coordinate [m]
	χ	scalar dissipation rate $[s^{-1}]$
A_S soot surface area [m ⁻¹]	χr	radiant fraction [dimensionless]
C_a agglomeration rate constant [dimensionless]	χabs	fraction of the power emitted by the flame
D inner burner diameter [m]	/\u03	that is re-absorbed [dimensionless]
d_S soot particle diameter [m]	φ_{\imath}	collision efficiency factor of species i
E_r relative error [dimensionless]	, .	[dimensionless]
f_S soot volume fraction [dimensionless]	η	wavenumber [cm ⁻¹]
$f_{S,max}$ maximum soot volume fraction [dimensionless]	κ	absorption coefficient [m ⁻¹]
F_{ν} radially integrated soot volume fraction [m ²]	κ_{η}	spectral absorption coefficient [m ⁻¹]
$F_{\nu,max}$ peak of radially integrated soot volume frac-	κ_p	Planck-mean absorption coefficient [m ⁻¹]
tion [m ²]	ρ	density [kg m ⁻³]
G_{η} incident radiation per unit wavenumber	$ au_{R_f}$	optical thickness [dimensionless]
$[Wm^{-1}]$	$\dot{\omega}_n$	reaction rate for soot nucleation
h enthalpy [J kg ⁻¹]		$[\text{mol m}^{-3} \text{s}^{-1}]$
h_f stoichiometric flame height [m]	$\dot{\omega}_{sg}$	reaction rate for soot surface growth
k absorption coefficient variable $[m^{-1}]$	J	$[\text{mol m}^{-3} \text{s}^{-1}]$
$k_{\rm P}$ Boltzmann constant [I kg ⁻¹]	$\dot{\omega}_{N_{S}}$	reaction rate for soot number density
$k_{S,n1}, k_{S,n1}$, soot nucleation Arrhenius reaction rates		[part $m^{-3} s^{-1}$]
$[s^{-1}]$	$\dot{\omega}_{O_2}$	reaction rate for soot oxidation by O_2
$k_{S,sg}$ soot surface growth Arrhenius reaction rate		$[kg m^{-3} s^{-1}]$
$[m s^{-1}]$	$\dot{\omega}_{OH}$	reaction rate for soot oxidation by
l _{sp} laminar smoke point height [m]		OH $[kg m^{-3} s^{-1}]$
$L_{\rm f}$ luminous flame height [m]	$\dot{\omega}_{0}$	reaction rate for soot oxidation by
N_A Avogadro number [part mol ⁻¹]		O $[kg m^{-3} s^{-1}]$
NC_{min} number of carbon atoms in the incipient soot	$\dot{\omega}_{Y_S}$	source term for soot mass fraction
particle [dimensionless]		$[kg m^{-3} s^{-1}]$
N_S soot number density per unit mass of mixture	ξ	mixture fraction [dimensionless]
[part kg ⁻¹]		
Q heat release rate (HRR) [W]	Subscript	
Q_R net radiative heat loss [W]		
$Q_{R,abs}$ absorbed radiant power [W]	∞	ambient condition
$Q_{R,em}$ emitted radiant power [W]	ad	adiabatic
$\dot{Q}_{R,sp}$ net radiative heat loss at the smoke point [W]	ag	agglomeration
R_f flame radius [m]	mix	mixing
r radial coordinate [m]	n	nucleation
T temperature [K]	P	Planck
u_r radial velocity [m s ⁻¹]	R	radiation
u_z axial velocity [m s ⁻¹]	ref	reference
V_f flame volume [m ³]	sg	surface growth
\dot{V}_{fuel} volumetric flow rate of fuel [m ³ s ⁻¹]	sp	smoke point
\dot{V}_{air} volumetric flow rate of air [m ³ s ⁻¹]	S	soot
W_i molecular weight of the species i [kg mol ⁻¹]	η	at a given wavenumber, or per unit
<i>x_i</i> mole fraction of species <i>i</i> [dimensionless]		wavenumber
X_R enthalpy defect parameter [dimensionless] Y_i mass fraction of species i [dimensionless]		
Y_i mass fraction of species i [dimensionless]		

production [11–25]. Numerical and experimental studies have shown that soot encounters radically different environments along its path in normal diffusion flames (NDFs) and inverse diffusion flames (IDFs) [11,26]. In NDFs soot forms in the annular region on the fuel-rich side of the flame sheet before being oxidized as it passes through the high-temperature oxidation zone [11]. On the other hand, in IDFs the soot particles form in a fuel-rich region at the top of the flame and escape from the flame without being oxidized [11]. IDFs were found to be characterized by combustion processes similar to those observed in underventilated fires,

in which combustion is fuel rich and large amounts of CO, soot and other carbon containing species are produced and non-oxidized [26]. Most of the previously-referenced works considered buoyant laminar flames. However, the effect of buoyancy in turbulent flames is known to be locally negligible, which means the investigation of soot production in microgravity flames is of particular interest. In addition, in microgravity (0g) the elimination of buoyancy-induced flows allows the exploration of longer residence times, which lead to the enhancement of both soot growth and oxidation processes. The sooting behavior of microgravity

Download English Version:

https://daneshyari.com/en/article/5428893

Download Persian Version:

https://daneshyari.com/article/5428893

Daneshyari.com