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a b s t r a c t

In this paper, we review the radiative transfer formalism of the matrix operator method,

and present the analytic form for its differentiation with respect to aerosol optical

thickness, microphysical parameters and surface parameters. This ‘‘linearization’’ is an

exact method that allows for an accurate and speedy computation of the Jacobian matrix,

which is key to most optimization-based retrieval methods. We define an aerosol in

terms of its optical thickness, complex refractive index and lognormal size distribution.

We consider a bimodal aerosol distribution, consisting of a fine and coarse mode, such

that the two modes also differ in their respective complex refractive indices. Three types

of surfaces have been considered, viz. a purely Lambertian surface, a modified Rahman–

Pinty–Verstraete bidirectional reflecting surface, and a Fresnel-reflecting ocean surface.

We verify our results by comparing our linearized Jacobians of normalized intensities

calculated at four different wavelengths in the visible (VIS) and near-infrared (NIR) and

viewing angles ranging from �751 through 01 to 751 with those computed by the method

of finite differences. We demonstrate the guaranteed accuracy of the linearized approach

by contrasting it with the finite difference method which can only be used as a rough

estimate due to its sensitivity to step size, especially for derivatives with respect to

aerosol microphysical parameters. We also report that the computational speed-up due

to linearization improves with the number of parameters involved, parity being achieved

with the finite difference method for just one parameter. Finally, we discuss the features

of the illustrated Jacobians as a function of viewing angle and wavelengths.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

This work is motivated by a need to find a speedy and
accurate method for computing the Jacobian matrix neces-
sary for an optimized retrieval of aerosol and surface
parameters from a multi-angular, multispectral satellite
instrument like the Multi-angle Imaging SpectroRadiometer
(MISR) [6]. Consequently, we show our results mainly for
a multi-angular satellite viewing geometry in the VIS–NIR
spectral regions corresponding to the MISR instrument.

Linearization with respect to scattering particles has
already been applied to radiative transfer methods based
on discrete ordinates [28,27], the Gauss–Seidel method [13]
and recently the Markov chain formalism [4]. This work is
the first time this approach as been applied to the matrix
operator method, which, according to Lenoble [17] is espe-
cially suited to the simulation of scattering atmospheres.

We first present in Section 2 a review of the radiative
transfer equation and its formulation in the framework of the
matrix operator method (MOM) [9–11,15,14,18]. We have
improved an existing model [19] and extended it to ‘‘linear-
ize’’ or analytically compute the derivative of the forward
model with respect to aerosol and surface parameters.
Our model will henceforth be referred to as smartMOM
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(simulated measurement of the atmosphere using radiative
transfer based on the Matrix Operator Method).

In Section 3 we briefly define the Jacobian matrix, then
proceed to present the linearized form of the radiative
transfer equation within the MOM framework. Section 4
provides a verification of our linearization by detailed com-
parison with the method of finite differences.

2. The matrix operator method

The matrix operator method or discrete space theory
[10,11] allows for an exact and speedy computation of the
radiative transfer of turbid media, especially because of its
encapsulation of the infinite series of reflections into a
single matrix inversion [17]

ðE�XÞ�1
�E¼XþX2

þX3
þ � � � , ð1Þ

where X is a matrix representing a pair of consecutive
reflections between the two layers and E is the identity
matrix. This eliminates the issue of slow convergence for
weakly absorbing atmospheres, i.e., at high values of single
scattering albedo, o0-1, that are faced by several other
methods. Also, there is minimal loss of computational
speed for increasing optical thicknesses. MOM generates
the entire radiative field for a given scenario, both internal
and at the boundaries of the atmosphere, for isotropic as
well as anisotropic scatterers, and hence can be used for the
simultaneous computation of intensities of radiation mea-
sured in different viewing geometries. Thus, it lends itself
ideally to the simulation of backscattered light arriving at a
satellite detector like MISR after reflection through a hazy
atmosphere with a dark or reflective underlying surface.

2.1. General formalism

The following equation describes monochromatic, sca-
lar, one-dimensional radiative transfer for an infinitesimal
layer in a plane parallel atmosphere:

mdLðt,m,f;m0,f0Þ

dt ¼�Lðt,m,f;m0,f0Þþð1�o0ÞBðTÞ

þ
o0

4p Pðm,f;m0,f0ÞS0 expð�t=m0Þ

þ
o0

4p

Z 2p

0

Z 1

�1
Pðm,f;m0,f0ÞLðt,m0,f0;m0,f0Þ dm0 df

0, ð2Þ

where m040 is the cosine of the solar zenith angle, f0 is
the solar azimuth angle, S0 is the incident flux at the top
of atmosphere (TOA), t is the optical depth from the TOA
of a layer of average optical thickness dt, o0 is the layer-
averaged single scattering albedo, B(T) is Planck’s function
for temperature T, P is the layer-averaged, normalized
phase function, and L is the intensity of the diffuse radiation
propagating along a direction cosine m such that m40 for
the downward and mo0 for the upward directions. All
terms on the right hand side of Eq. (2) having a positive sign
denote sources, while the negative sign denotes sinks of
radiant energy. Furthermore, the phase function P is nor-
malized such that

1

4p

Z 2p

0

Z 1

�1
Pðm,f;m0,f0Þ dm0 df0 ¼ 1: ð3Þ

Expressing the total radiance as the sum of its direct
and diffuse parts, so that

Iðt,m,f;m0,f0Þ ¼ S0 expð�t=m0Þdðm�m0Þdðf�f0Þ

þLðt,m,f;m0,f0Þ ð4Þ

we can rewrite Eq. (1) as

mdIðt,m,f;m0,f0Þ

dt ¼�Iðt,m,f;m0,f0Þþð1�o0ÞBðTÞ

þ
o0

4p

Z 2p

0

Z 1

�1
Pðm,f;m0,f0ÞIðt,m0,f0;m0,f0Þ dm0 df

0: ð5Þ

The boundary conditions on the above are

Ið0,m,f;m0,f0Þ ¼ S0dðm�m0Þdðf�f0Þ ð6Þ

for mZ0, representing incoming solar radiation at the top
of atmosphere, where dð�Þ is the Dirac delta function.

The atmosphere is bounded below by a surface of
emissivity EðmÞ and bidirectional reflectance distribution
function rðm,f;m0,f0Þ, so that denoting the total atmo-
spheric optical thickness as ts yields

Iðts,m,f;m0,f0Þ ¼ EðmÞBðTÞ

þ

Z 2p

0

Z 1

0
rðm,f;m0,f0ÞIðts,m0,f0;m0,f0Þm0 dm0 df

0
ð7Þ

with the natural constraint

EðmÞþ
Z 2p

0

Z 1

0
rðm,f;m0,f0Þm0 dm0 df0 ¼ 1: ð8Þ

Following Chandrasekhar [2], we express the intensity
and the phase function (assumed azimuthally symmetric
here) using Fourier expansion [5,26,2] as

Iðm,f;m0,f0Þ ¼
XN

m ¼ 0

Imðm,m0Þ cos mðf�f0Þ, ð9Þ

Pðm,f;m0,f0Þ ¼
1

2

XN

m ¼ 0

ð2�d0mÞamðm,m0Þ cos mðf�f0Þ,

ð10Þ

where N-1. Substituting Eqs. (9) and (10) in Eq. (5), and
writing

Pmðm,m0Þ ¼ 2�d0m

2

� �
amðm,m0Þ ð11Þ

we get

mdImðt,m,m0Þ

dt ¼�Imðt,m,m0Þ

þ
o0ð1þd0mÞ

4

Z 1

�1
Pmðm,m0ÞImðt,m0,m0Þ dm0

þð1�o0ÞBðTÞd0m, ð12Þ

where dij ¼ 1 for i¼ j, and dij ¼ 0 for iaj. Eqs. (10)–(12) are
defined such that, if Eq. (3) holds true, we get for m¼0

1

2

Z 1

�1
P0ðm,m0Þ dm¼ 1 ð13Þ

for all m0. P0 represents the azimuthally averaged phase
function for scattering between the zenith angles m0 and m.

Now using a quadrature scheme (Gauss–Lobatto) to
discretize the zenith angles, Eq. (12) can be rewritten in
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