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a b s t r a c t

A numerical accuracy analysis of the radiative transfer equation (RTE) solution based on

separation of the diffuse light field into anisotropic and smooth parts is presented. The

analysis uses three different algorithms based on the discrete ordinate method (DOM).

Two methods, DOMAS and DOM2þ , that do not use the truncation of the phase

function, are compared against the TMS-method. DOMAS and DOM2þ use the Small-

Angle Modification of RTE and the single scattering term, respectively, as anisotropic

parts. The TMS method uses the Delta-M method for truncation of the phase function

along with the single scattering correction. For reference, a standard discrete ordinate

method, DOM, is also included in analysis. The obtained results for cases with high

scattering anisotropy show that at low number of streams (16, 32) only DOMAS

provides an accurate solution in the aureole area. Outside aureole, the convergence and

accuracy of DOMAS, and TMS is found to be approximately similar: DOMAS was found

more accurate in cases with coarse aerosol and liquid water cloud models, except low

optical depth, while the TMS showed better results in case of ice cloud.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

This paper continues analysis of the scalar radiative
transfer equation (RTE) with highly asymmetric phase
function in the framework of the discrete ordinates
method (DOM) [4,21]. In our recent paper [12], a parti-
cular attention was paid to the methods based on decom-
position of the diffused light field into a smooth (regular)
part and analytically expressed anisotropic part without
truncation of the phase function. With anisotropy sub-
traction, the regular part of the signal, which requires a
numerical solution, is essentially smoothed as a function
of angles.

In DOM, the view zenith angle (VZA) anisotropy of the
signal is expressed via an even number 2N of linear
differential equations in the system. Each ordinate corre-
sponds to one equation, and there are N ordinates per
hemisphere. The azimuthal dependence of radiance is
expressed via the Fourier series with M harmonics, where
the system of N linear equations is solved independently
for each m¼0,y,M [23] providing solution in i¼1,y,N
discrete points �1omioþ1; mia0, 71.

Our previous work [12] showed that anisotropy
subtraction using a Small-Angle Modification of RTE,
implemented in code DOMAS, accelerated azimuthal
convergence of solution significantly, by a factor of three.
However, contrary to our expectations, this method did
not improve convergence in zenith angle, meaning that a
large number of streams would still be required for high
accuracy computations with very asymmetric phase func-
tions. It is worth mentioning that accuracy comparison for
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different number of streams N in [12] used cubic spline
interpolation to yield solution at selected angles. This
method was criticized by Karp [10] as limiting the
computational accuracy. A convenient form of computa-
tion for an arbitrary angle using integration of the source
function was introduced in DOM by Kourganoff [13]. The
current work employs the idea of ‘‘natural’’ interpolation
by including the required view angles as dummy nodes
�1rmdrþ1 into DOM scheme with zero weighting
coefficients wd¼0 [3]. This new approach yields the high
accuracy solution with low number of streams. Below, we
provide code details and a comparison with other
approaches for three cases with high scattering aniso-
tropy, including coarse aerosol fraction and liquid water
and ice cloud models.

This paper is structured as follows: Section 2 defines
the problem and describes the main characteristics of the
methods compared in the paper. The definition of the
scenarios for numerical tests is given in Section 3 fol-
lowed by discussion of the results in Section 4. The paper
is concluded with the summary.

2. Definition of the problem

For simplicity, we consider the boundary problem for
the scalar RTE and plane-parallel homogeneous atmo-
sphere illuminated at the right angle [4]

Here, I(t,m) is the radiance given as a function of
optical depth t (0rtrt0) and a cosine of VZA m¼cos y.
The surface is assumed to be black. The media scattering
properties are given by the single scattering albedo (SSA)
o0 and phase function p(m,m0). The z-axis is pointed
downwards, so that 01ryo901 (mþ40) and 901oyr
1801(m�o0) correspond to transmitted and reflected
radiation, respectively.

The phase function is expanded in the Legendre series

pðm, m0Þ ¼
XKmax

k ¼ 0

ð2kþ1ÞxkPkðmÞPkðm0Þ, ð2Þ

where Pk(m) is the Legendre polynomial of degree k, xk are
expansion moments, and Kmax is the maximum expansion
order necessary for accurate representation of the phase
function which will be denoted hereafter as K if the
number of terms involved is less than Kmax.

The discrete ordinate method is often used to solve
Eq. (1). Using the double-Gauss quadrature [22], the
scattering integral in Eq. (1) is expressed as a sum in the
formZ 1

�1
pðm, m0ÞIðt, m0Þdm0 �

XN

j ¼ 1

wjpðm, m�j ÞIðt, m�j Þ

þ
XN

j ¼ 1

wjpðm, mþj ÞIðt, mþj Þ, ð3Þ

where wj are the weighting coefficients, mj are the nodes
(zeros) of the Legendre polynomial PN(m). Eq. (3) yields
the system of 2N linear differential equations for Eq. (1).
While parameters K in Eq. (2) and N in Eq. (3) seem to be
independent, it was shown that N¼K/2 gives numerically
stable results [23]. Thus N¼K/2 is assumed in Section 2.

The right-hand side of the RTE Eq. (1) is called the
source function [4]. The free term of the source function
contains all Kmax moments of the phase function

o0

2
pðm,1Þexpð�tÞ ¼ o0

2
expð�tÞ

XKmax

k ¼ 0

ð2kþ1ÞxkPkðmÞPkð1Þ, ð4Þ

regardless of the number of moments K of the phase
function under the scattering integral. The acronym DOM
will be used further in this paper for the traditional
discrete ordinate method defined by Eqs. (1)–(4) without
any modifications. Note that for the azimuthally indepen-
dent case the single scattered radiation is included in
DOM exactly.

Large particles as in clouds, snow, coarse aerosol
fraction etc. cause a strong forward scattering and peaks
in the backscattering directions. In these cases, K-para-
meter in Eq. (2) is large, �103 as well as the number 2N of
DOM equations. At large N, the matrix of the system
easily becomes ill-conditioned, and its solution is time
consuming.

Presently, there are two main approaches to solve the RTE
problem with high scattering anisotropy. The first one uses
different truncation approximations of phase function. These
methods were recently analyzed by Rozanov and Lyapustin
[19]. The error caused by truncation of the phase function is
significantly reduced by the postprocessing correction in the
single scattering [17,16] or the source function integration
[5]. The second approach singles out the anisotropic part of
the light field without changing the phase function [18,2].

In this paper we compare three different methods. The
first one singles out the anisotropic part of radiance,
IA(t,m), using the Small-Angle Modification [1,6,8]:

Iðt, mÞ ¼ IAðt, mÞþ IRðt, mÞ ð5Þ

Importantly, IA(t,m) has an analytical expression. With
major anisotropy of signal thus removed, the RTE for the
smooth regular part, IR(t,m), becomes more amenable for
the numerical solution than the original Eq. (1). The
resulting code DOMAS was described in [12].

In the second method the single scattering approxima-
tion is treated as the anisotropic part IA(t,m)¼ I1(t,m)
[7,20]

Iðt, mÞ ¼ I1ðt, mÞþ I2þ ðt, mÞ ð6Þ

The second and the higher scattering orders, taken
together, represent the regular part in this case: IR(t,m)¼
I2þ(t,m). The computational details of this method, called

m @Iðt,mÞ
@t þ Iðt,mÞ ¼ o0

2

R 1
�1 pðm,m0ÞIðt,m0Þdm0 þ o0

2 pðm,1Þexpð�tÞ,
Iðt, mþ Þ ¼ 0; Iðt0, m�Þ ¼ 0:

(
ð1Þ
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