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We have developed a novel model – Vectorial Complex Ray Model (VCRM) – for the

scattering of a smooth surface objet of arbitrary shape. In this model, a wave is

described by bundles of rays, and a ray is characterized not only by its direction and

amplitude but also the curvature and the phase of the wave. These new properties allow

to take into account the phase shift due to the focal lines of an arbitrary shaped wave

and the amplitude due to the divergence/convergence of the wave. The interferences

can therefore be calculated correctly for an arbitrarily shaped particle of smooth

surface. In this paper, we present an application of the VCRM in the 2D scattering of

a plane wave by a homogeneous ellipsoid at oblique incidence. The transversal

divergence effect of the wave will be discussed. The rainbows of ellipsoidal droplet

and bubble are investigated.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In the study of electromagnetic and light scattering,
the variable separation methods based on the solution of
Maxwell equations (or its equivalents) are limited to
objects that can be described in a coordinate system of
the same geometry, such as sphere, spheroid, ellipsoid,
and circular or elliptical cylinder. Even in these ‘‘simple’’
cases, the numerical calculation remains another obstacle.
Except for the sphere and the circular cylinder, the size of
the scatterer can hardly exceed a few tens of wavelengths.
Numerical methods such as T matrix, discrete-dipole
approximation (DDA), etc., can be applied to nonspherical
particles, but the size parameter of the scatter is also
severely limited [1,2].

Geometrical optics is a simple and intuitive method for
treating the interaction of an object with electromagnetic
or light waves when the dimension of the object is much

larger than the wavelength [3–8]. One of its main advan-
tages over other methods is that it can be applied to
objects of complex shape, which are hard or even impos-
sible to be dealt with by rigorous theories or most
numerical techniques. Many researchers have contributed
to the improvement of geometrical optics. Some take into
account the forward diffraction or other particular wave
effects (Airy theory for the rainbow [3,9,10] and Marston’s
model for the critical scattering [11,12]). Others combine
directly geometrical optics with the electromagnetic wave
method [4,13]. However, in these studies interference
effects of all order rays are rarely taken into account. In
the case of faceted particles, Bi et al. take into considera-
tion the phase information of rays by a solution physical-
geometric optics hybrid method [14].

On the other hand, when ray optics is extended to a
three dimensional (3D) object of irregular shape, it
becomes a heavy task (see [15–18] and references
therein) because of the difficulties in the determination
of reflection and refraction angles, the calculation of local
divergence factors and the phase shift due to focal lines.
To overcome these obstacles, we have developed a so-
called Vectorial Complex Rays Model (VCRM) [19] that
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claude.roze@coria.fr (C. Rozé), thierry.girasole@coria.fr (T. Girasole).

Journal of Quantitative Spectroscopy & Radiative Transfer 113 (2012) 2419–2423

www.elsevier.com/locate/jqsrt
www.elsevier.com/locate/jqsrt
dx.doi.org/10.1016/j.jqsrt.2012.04.015
dx.doi.org/10.1016/j.jqsrt.2012.04.015
dx.doi.org/10.1016/j.jqsrt.2012.04.015
mailto:fang.ren@coria.fr
mailto:ren@coria.fr
mailto:claude.roze@coria.fr
mailto:thierry.girasole@coria.fr
dx.doi.org/10.1016/j.jqsrt.2012.04.015
dx.doi.org/10.1016/j.jqsrt.2012.04.015


includes the wave properties in the ray model. It consists
of three points: the rays are dealt with by vectors; the
divergence and the focal line phase shifts are calculated
by differential geometry; and the total scattered field is
the superposition of the contributions of all complex rays.
This model makes it possible to calculate the divergence
factor of a single ray bundle and is easy to extend to
irregularly shaped 3D objects. This model is briefly
described in the second section. The validation is made
versus Lorenz–Mie theory for spherical particles in the
following section. Finally, in the last section, we present
an application of the VCRM in the 2D scattering of a plane
wave by ellipsoidal droplet and bubble at oblique inci-
dence. The effect of the transversal divergence of the
wave will be discussed. The rainbows of an ellipsoidal
particle are investigated.

2. Description of the model

In VCRM, the wave is considered as bundles of vector-
ial complex rays. Each ray denoted by q is characterized
by four parameters: amplitude Aqm, phase Fq, direction of
propagation k and polarization state m (see [19] for
details)

Sqm ¼ AqmeiFq k ð1Þ

where m¼ 1 and 2 for perpendicular and parallel polar-
ization respectively.

The amplitude of the ray is determined by the Fresnel
coefficient Eqm and the divergence coefficient Dq

Aqm ¼
ffiffiffiffiffiffi
Dq

p
9Eqm9 ð2Þ

The divergence coefficient Dq of an emergent ray after
pþ1 time interactions with the dioptry surface is deter-
mined by curvature radii of the wave according to

D¼ R011R021

R12R22
�
R012R022

R13R23
� � �

R01,pþ1R02,pþ1

ðrþR01,pþ1ÞðrþR02,pþ1Þ
ð3Þ

where r is the distance between the emergent point to the
observation point. R1q and R2q (q¼ 0;1,2, . . . ,pþ1) are the
two principal radii of wavefront curvature of the incident
wave, and R01q and R02q that of the refracted wave for qth
interaction, and p is called the order of the emergent ray.
In fact, R1qR2q and R01qR02q are respectively the Gauss
curvature radii of the incident and refracted waves and
they can be determined by the curvature matrix equation
[19].

The phase of an emergent ray is composed of four
parts: (1) The phase due to optical path Fp which can be
computed directly according to the optical trajectory. (2)
The phase due to the focal point or focal line Ff : each time
the curvature radius Rij changes the sign we add a phase
p=2, either in or out of the object. (3) The phase due to the
reflection or refraction which is included in the Fresnel
coefficient Fr . (4) The phase of the incident wave Fi.
The total phase of a ray is then

F¼FpþFf þFrþFiþp=2 ð4Þ

where p=2 is added for the coincidence with the diffrac-
tion field.

Consider now an arbitrary wave of wavefront described
by its curvature matrix Q impinging on a dioptric surface of
curvature matrix C (Fig. 1). The curvature matrix Q 0 of the
wave after refraction or reflection is given by the wavefront
matrix equation

ðk0�kÞ � nC ¼ k0Y0T Q 0Y0�kYT QY ð5Þ

where the letters with prime represent the quantities after
refraction or reflection, the superscript T the transpose of
the matrix, Y the projection matrix between the unitary
vectors of the coordinates systems on the planes tangent to
the wavefront (t1,t2) and the dioptric surface (s1,s2)

Y¼
t1 � s1 t1 � s2

t2 � s1 t2 � s2

 !

The relation between the wave vector k of the incident
ray, the wave vector of reflected or refracted ray k0 is
determined by the vector Snell law

ðk0�kÞ � n¼ 0 ð6Þ

where n is the normal of the dioptric surface.
Knowing the amplitude and the phase of each ray, we

calculate the total scattered field by the superposition of
the complex amplitude of all orders p of the rays emer-
gent from the object and the diffraction

E¼
X1
p ¼ 0

EpþEdiff ð7Þ

The diffraction is calculated in this paper by using the
Fraunhofer diffraction of 2D disk which is the projection
of the object on a plane perpendicularly to the incident
beam.

3. Validation of the model

To validate this model, we have shown theoretically
that in the special cases of scattering of a plane wave by a
sphere and an infinite circular cylinder at normal inci-
dence, this formalism leads to the classical formulation as
given, for example, in [3,9].

A software is realized in CodeGear Delphi 2007 with a
friendly interface for ray tracing and calculation of the
scattering diagram. To validate our code, the scattered
intensities calculated by the software have been com-
pared to the Lorenz–Mie theory (LMT) in the case of
spherical particle. As an example, Fig. 2 shows the scattering
diagram of a water droplet of radius a¼ 20 mm illuminated
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Fig. 1. Schema of the fronts of waves and the dioptric surface.
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