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a b s t r a c t

Detection of atmospheric trace gases by optical remote sensing techniques relies on the

availability of molecular absorption spectra over a range of relevant temperatures.

Absorption cross-sections of a pure vapour of the hydrochlorofluorocarbon HCFC-141b

are reported at a resolution of 0.02 cm�1 for a range of temperatures between 223 and

283 K and a spectral range of 570–3100 cm�1. The integrated intensities of the nine

main harmonic bands compare well with the data available from previous experimental

studies and with theoretical calculations by ab initio and density functional theories.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

After the phase-out of chlorofluorocarbons by the
Montreal Protocol and its further amendments, HCFC-
141b (1,1-dichloro-1-fluoroethane or CH3CFCl2) has been
extensively used to replace CFC-113 as a solvent, and CFC-
11 as a foam-blowing agent in manufacturing processes.
Its concentration in the atmosphere has risen quickly
from the early 1990s to reach a mean global surface
mixing ratio above 22 ppt (part per trillion) at the end
of 2011 [1]. HCFC-141b is currently the second most
abundant hydrochlorofluorocarbon in the atmosphere
after HCFC-22 (CHClF2).

Measurements of HCFC-141b have recently been reported
from space-borne missions [2]. An important factor for data
retrieval is the quality of the spectroscopic information
available over a range of relevant atmospheric temperatures.
The purpose of this study is to provide new infrared absorp-
tion cross-section spectra of pure HCFC-141b from 223 to
283 K at a resolution of 0.02 cm�1 (OPD¼50 cm).

2. Experimental set-up

Experimental data are acquired using Fourier transform
infrared (FTIR) absorption spectroscopy. The Fourier trans-
form spectrometer (FTS) is a Bomem DA8.002 equipped
with a KBr beamsplitter and operating with a Globar source.

The gas sample (Synquest Laboratories, 99.5%) is con-
tained in a stainless steel cell positioned between the FTS
and a liquid nitrogen-cooled mercury cadmium telluride
(MCT) detector. ZnSe windows are sealed to the gas cell
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with indium o-rings to prevent leakage at low temperature.
A short pathlength of 2.93 cm has been chosen to avoid
saturation effects while working at manageable pressures.
HCFC-141b being liquid at room temperature, each sample
is degassed by several Freeze-Pump-Thaw cycles prior to
entering the cell. The cell pressure is measured by 10 Torr
and 1000 Torr MKS baratron pressure gauges. All the
acquisitions have been made with a pure vapour to allow
a better accuracy of the pressure reading. Atmospheric
retrievals can be performed with these laboratory cross-
sections using the pseudo-lines method [3].

The cooling is achieved by a Neslab ULT-80 chiller
sending the coolant (Syltherm XLT) to a copper tube
surrounding the cell. The copper tube is soldered to the
cell and covered by thermally conductive epoxy to
enhance temperature homogeneity. The cell temperature
is measured by a single thermocouple directly inserted
inside the cell. The temperature readout accuracy during
experiments is typically 70.1 1C for temperatures down
to 263 K and 70.2 1C for lower temperatures.

Typical artefacts and sources of errors of FTIR spectra (i.e.
spectral aliasing, dynamic alignment error, blackbody emis-
sion from the source aperture, and nonlinearity of the MCT
detector in the mid-infrared) have been minimized using
the same procedure as described in [4]. The spectral
calibration of the instrument has been verified by compar-
ing a laboratory CO2 spectrum with the corresponding lines
in the HITRAN 2008 database [5]. The average shift on the
50 lines we analyzed was negligible (�1.14�10�4 cm�1

with a standard deviation of 1.135�10�3 cm�1).

3. Data analysis

For each temperature, a series of unapodised scans has
been recorded at five pressures between 2 and 50 Torr for
283, 273, 263 and 253 K. The saturation vapour pressure
of HCFC-141b limited the acquisitions at high pressure to
30 Torr at 243 K, 20 Torr at 233 K and 10 Torr at 223 K.

Each pressure–temperature (P–T) spectrum is composed
of a minimum of 200 unapodised scans.

Control baseline spectra, each of them generated from
a minimum of 20 scans, are recorded before and after
each sample measurements to account for the small
intensity variations that can occur during the acquisitions.
For each temperature, a several hundred scan primary
baseline spectrum with high signal-to-noise ratio is pro-
duced from the multiple control baseline spectra. If need
be, for each P–T acquisitions, the primary baseline spec-
trum can be adjusted to the control baseline spectra using
a polynomial regression prior to the rationing of the
sample spectrum to the background spectrum.

The cross-section, sðnÞ, in cm2/molecule is obtained
using the Beer–Lambert law:

IðnÞ ¼ I0ðnÞe�wðnÞ, ð1Þ

where n is the wavenumber (cm�1); I0, the light intensity
passing through the empty cell (baseline); I, the light
intensity passing through the sample gas cell and w, the
optical depth defined by:

wðnÞ ¼ sðnÞ PT0

TP0
NLL: ð2Þ

NL is Loschmidt’s constant (2.6868�1019 molecules/
cm3); L, the length of the cell (cm); and P0 and T0, the
standard conditions for pressure and temperature.

To prevent saturation effects in an optically thick
medium while keeping a good signal-to-noise ratio at
every wavenumber, the points corresponding to optically
thick ðwðnÞ41:1Þ or optically thin ðwðnÞo0:1Þ conditions
are eliminated. This way, a linear behaviour is obtained
for strong absorption bands from the low-pressure mea-
surements while weak absorption features are repre-
sented by the high-pressure measurements.

The shapes of the sharp ro-vibrational transition lines,
as well as the peaks of the Q-branches, are pressure-
dependent due to collisional broadening. Therefore, the
cross-section for a pure vapour cannot be directly
obtained by a linear fit of the optical depth as a function

Fig. 1. Variation of the optical depth w and apparent cross-section sapp ð�10�18 cm2=moleculeÞ as a function of pressure at n¼ 752:963 cm�1 for a

temperature of 243 K. Note that the value at the highest pressure was not included in the calculation as its optical depth was higher than 1.1.
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