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a b s t r a c t

Stochastic spectral expansions are used to represent random input parameters and the

random unknown solution to describe radiation transport in random media. The total

macroscopic cross section is taken to be a spatially continuous log-normal random

process with known covariance function and expressed as a memoryless transformation

of a Gaussian random process. The Karhunen–Lo �eve expansion is applied to represent

the spatially continuous random cross section in terms of a finite number of discrete

Gaussian random variables. The angular flux is then expanded in terms of Hermite

polynomials and, using a quadrature-based stochastic collocation method, the

expansion coefficients are shown to satisfy uncoupled deterministic transport

equations. Sparse grid Gauss quadrature rules are investigated to establish the efficacy

of the polynomial chaos-collocation scheme. Numerical results for the mean and

standard deviation of the scalar flux as well as probability density functions of the scalar

flux and transmission function are obtained for a deterministic incident source,

contrasting between absorbing and diffusive media.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The mathematical modeling of a broad range of
physical phenomena requires the use of random differ-
ential, integral, or integro-differential operators. In radia-
tion transport applications, randomness may reflect
uncertainty in microscopic cross sections resulting from
limited accuracy of experimental measurements or of
underlying nuclear models. It may also result from
material density fluctuations, for example turbulent
mixing in atmospheric and stellar media, Rayleigh–Taylor
unstable media [1,2], and random distribution of nuclear
fuel in advanced fission reactor designs [3]. Work to date

on radiation transport in random media has heavily
focused on binary statistical mixtures of immiscible
materials. The binary mix model has been used for
modeling cloudy atmospheres [4] and mixing zones at
ICF fusion pellet interfaces [5]. In such applications, the
randomness in the material density, and hence cross
sections, arises from the random distribution of material
interfaces, with the density being a deterministic quantity
within each material. In this paper, on the other hand, we
will consider the case in which material properties vary
continuously as a function of space with a well-defined
spatial correlation function. An alternative, more funda-
mental view of transport in random media, especially
relevant in the characterization of clouds for atmospheric
radiative transfer, can be found in [6].

Regardless of the source and type of parametric
uncertainty, the solution, numerical or otherwise, of
stochastically posed problems requires the physical
parameters to be expressed as random variables, or
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random processes if the randomness has spatial and/or
temporal dependence. Appropriate orders of moments,
correlations and probability distribution functions of all
input random parameters are assumed available and the
level of detail of the statistics necessary to solve a
particular problem will depend on the level of sophistica-
tion of the solution technique one is willing to employ. For
instance, in direct sampling or Monte Carlo methods, the
input parameters must be repeatedly sampled to generate
a sufficiently large ensemble of solutions from which
averages and probability distributions of output variables,
as well as functionals of these variables, can be con-
structed. Thus, in this case, the input parameter un-
certainty must be maximally characterized and expressed
in the form of probability distribution functions. However,
the cost of routinely applying such Monte Carlo methods
can be prohibitively high. At the other extreme, closure
methods, which seek to obtain a small number of
approximate but deterministic equations directly for the
mean and possibly also for the variance or correlation,
rely only on low-order input parameter statistical
information. This feature makes the approach computa-
tionally very attractive and suitable for developing insight
into the effects of parametric stochasticity and, under
specialized circumstances, generating analytical solutions.
However, closures tend to be highly specialized. Their
predictive capability deteriorates rapidly outside their
domain of strict validity and they do not lend themselves
to generalization. The Levermore–Pomraning closure [1],
for instance, which was developed to describe radiation
transport in random binary mixtures, is an exact closure
when the material mixing is Markovian and all materials
are purely absorbing. However, when either of these
restrictions is violated, the closure can give highly
inaccurate results [1] and has proved notoriously difficult
to generalize.

A desirable methodology, then, is one capable of
yielding accuracy potentially rivaling that of direct
sampling methods but at a fraction of the computational
cost, ideally, comparable to the cost of closure-based
methods. In recent years, stochastic spectral methods
[7–10] using the so-called polynomial chaos expansions
(PCE) have been demonstrated to achieve high accuracy
and computational efficiency, and have gained wide-
spread popularity for solving physical problems formu-
lated with random operators. The essence of this approach
is the expansion of the random field representing the
unknown solution in terms of random orthogonal basis
functions and then reformulating the problem in terms of
the unknown, but now deterministic, expansion coeffi-
cients. Equations for the latter can be obtained either by
effecting Galerkin projections over the random basis
functions, a technique that is known as the stochastic
finite element method (SFEM) [7,8], or by applying a
quadrature-based collocation method in the random
dimension, a technique that is known as the stochastic
collocation method (SCM) [11]. These techniques have
met with considerable success in computational fluid
dynamics and structural mechanics applications in
particular, providing a robust methodology for uncer-
tainty propagation and quantification, and there is now

increasing interest in applying stochastic spectral meth-
ods to solve the stochastic radiation transport equation
[9,10,12].

In this article, we apply the PCE-SCM method to the
numerical solution of the linear transport equation when
the atomic density of the medium is a continuous random
function of position with log-normal probability distribu-
tion. That is to say, the atomic density and by extension
the macroscopic cross section are random processes that
are described at each point in the domain by a log-normal
distribution. Since the underlying random process is
Gaussian, the distribution is entirely characterized by its
mean and covariance function. The covariance function
describes how rapidly two points on the spatial domain
become statistically independent and in most physical
applications this effect is conveniently captured by a
correlation length (we describe this in detail below for a
specific application). Key to the numerical solution of
randomly posed problems of the type considered in this
paper is the ability to efficiently and accurately represent
continuous random processes. Although it is possible in
principle to construct realizations of correlated Gaussian
processes directly on a grid (as demonstrated below), in
practice this procedure can be computationally inefficient
and it is desirable to first use a so-called dimension
reducing technique such as the Karhunen–Lo�eve (KL)
transform [13]. We defer a detailed discussion of this
method to an appropriate point in the paper, but we note
here that the KL transform accurately approximates a
continuous Gaussian random process by a finite linear
combination of independent Gaussian random variables,
thereby making it particularly straightforward and effi-
cient to generate numerical realizations of Gaussian
processes, as well as nonlinear functions and functionals
of such processes.

The advantage of the log-normal process over the
Gaussian is that its support is non-negative so that, unlike
with the Gaussian distribution, negative cross section
values cannot occur. Thus, large atomic density variances
can be accommodated without incurring the complication
of unphysical artifacts commonly associated with Gaussian
representations of highly variable physical data [14].
This enables a systematic investigation to be conducted
of the effect of parametric uncertainty on the statistics of
the output variables and on the numerical efficiency
of the spectral representation. The KL representation is
easily obtained by first generating the expansion for the
associated Gaussian random process and then applying a
suitable nonlinear transformation. Once the KL expansion
is generated, collocations of the random variables can be
constructed using multidimensional Gauss quadrature
rules for use in the PCE-SCM approach. As will be shown,
however, the product quadrature sets expand rapidly with
increasing numbers of random variables in the KL
representation of the original random process and it
becomes essential to employ a sparse grid quadrature
method for the SCM approach to remain computationally
viable.

The scope of the paper is as follows. The stochastic
transport problem is defined and discussed in Section 2
followed by a presentation of the Karhunen–Lo�eve
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