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The propagation kernel for time dependent radiative transfer is represented by a Feynman

path integral (FPI). The FPI is approximately evaluated in the spatial-Fourier domain.

Spatial diffusion is exhibited in the kernel when the approximations lead to a Gaussian

dependence on the Fourier domain wave vector. The approximations provide an explicit

expression for the diffusion matrix. They also provide an asymptotic criterion for the self-

consistency of the diffusion approximation. The criterion is weakly violated in the limit of

large numbers of scattering lengths. Additional expansion of higher-order terms may

resolve whether this weak violation is significant.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Simulations and imagery of smoke, water, clouds, and
other natural phenomena are routinely generated in the
computer graphics industry. The imagery is generated
primarily from a single scattering approximation, although
it can deviate from that for artistic purposes. Multiple
scattering is very desirable, but the existing algorithms in
use are very ad hoc, not visually good, not sufficiently
flexible, and inefficient in the workflow. The algorithm in
this paper is the basis for a new software tool addressing all
of those limitations (although still with artistic deviations
added to it). It has the benefit of beginning with a strong
scientific footing in the radiative transfer equation, then is
approximated only as much as necessary for the computer
graphics application. Also, the algorithm is very flexible for
added artistic deviations, and works very well in visual
effects production. In this approach, the algorithm should
ideally achieve both quasi-ballistic and diffusive regimes of
transport behavior, and transition gracefully between
the two.

The relationship between radiative transfer and its
approximation by diffusion has been of intense interest
and application for quite some time. In an extensive review
by Davis and Marshak [1], the known methods to relate
diffusion and radiative transfer are sorted into two cate-
gories. One is a constitutive approach, using Fick’s law to
relate the scalar flux to vector flux; the other, including
asymptotics, is an approximation of radiative transfer in
the limit of many scattering events. Both approaches
address the extreme of completely diffuse transport, but
do not provide a description of how the multiple scattering
transitions into diffusion. It would also be very useful to
have a framework or model that characterizes the transi-
tion from the extreme of near-ballistic behavior to the
diffusive regime in scattering media.

In this paper the relationship is analyzed in a new way. The
radiative transfer problem is formulated in terms of a Feynman
path integral (FPI), which then serves as the starting point for
approximations leading to both angular smoothing and spatial
diffusion. Radiative transfer has previously been evaluated in
terms of FPIs and variations of it [2–5], for applications in ocean
optics [6], medical imaging [7], and computer graphics [8,9].
Each application approximated the FPI in accordance with the
application’s needs, for example using the small angle approx-
imation for ocean and tissue optics. But none of them system-
atically attempt approximations which could potentially be
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valid in a broad range of applications including diffusive and
non-diffusive settings. The approximations in the present
paper are less restrictive than those of previous works, and
apply across a broader range of problems. In particular, the
approximation process used here produces an asymptotic
relation for the self-consistency of the procedure.

The approximation is in three steps. The first is an
approximation of the functional integral over ‘‘momen-
tum,’’ which is defined here as the Fourier conjugate of the
increment in direction due to scattering. The result is
achieved via a standard stationary phase procedure. The
second is approximation of the functional integral over
paths through the scattering medium via a steepest
descents procedure. These first two steps produce explicit
results which are not limited to a diffusive regime. The
third and final approximation seeks a simplification that
exhibits spatial diffusion. This simplification is the source
of the asymptotic relation criterion for diffusion.

The remainder of this paper is organized as follows. In
Section 2 the FPI for radiative transfer is examined
in preparation for applying approximations. Section 3
discusses the energy conservation property of the radiative
transfer propagation kernel, and how that property is
preserved in the approximation process. The stationary
phase and steepest descents approximations are carried
out in Section 4. Spatial diffusion is exhibited in Section 5
after the asymptotic relation is defined and applied to the
approximated kernel. The diffusion result is examined for
self-consistency with the asymptotic relation as well.
Speculation about further research into the mechanism
for diffusion is contained in Section 6. Conclusions are
presented and discussed in Section 7.

For completeness, the particular version of the FPI used
in this paper is derived in Appendix A using the same
character of argument used in standard derivations of the
FPI in quantum mechanics [10].

Finally, it should be noted that all of the calculations and
results for this approximation of the FPI for radiative
transfer are shown for the special case of a medium that
is uniform with infinite extent. By slightly rephrasing the
FPI, a medium with arbitrary spatial variability can be
handled. One of the biggest changes in the outcome is that
the number of scattering lengths plays a much more
important role in sorting out various paths that contribute
to the stationary phase and steepest descents approxima-
tions. This topic will be the subject of future publications.

2. Feynman path integral representation

The Feynman path integral (FPI) representation applies
to the propagation kernel for time dependent radiative
transfer. The radiance distribution L satisfies the equations

@

@s
þ n̂ � rþc

� �
Lðs,x,n̂Þ ¼ b

Z
dOðn̂uÞPðn̂,n̂uÞLðs,x,n̂uÞþSðs,x,n̂Þ,

ð1Þ

Lð0,x,n̂Þ ¼ 0, ð2Þ

where c and b are the total and scattering extinction coeffi-
cients respectively, a=c�b is the absorption coefficient, P is the
normalized phase function, and S is a light source. The time s is

in units of length after scaling by the light velocity. In terms of a
propagation kernel, the explicit integral form of (1) is

Lðs,x,n̂Þ ¼

Z s

0
dsu

Z
d3xu

Z
dOðn̂uÞGðs�su,x,n̂;xu,n̂uÞSðsu,xu,n̂uÞ,

ð3Þ

where the kernel G satisfies the initial value problem

@

@s
þn̂ � rþc

� �
Gðs,x,n̂;xu,n̂ uÞ ¼ b

Z
dOðn̂uuÞPðn̂,n̂uuÞGðs,x,n̂uu; xu,n̂uÞ,

ð4Þ

Gð0,x,n̂;xu,n̂Þ ¼ dðx�xuÞdðn̂�n̂uÞ: ð5Þ

This integro-differential formulation of the radiative
transfer problem also applies to steady-state problems,
which can be viewed as a long-time limit of the time-
dependent problem. A common application is that the
source is always on and time-independent. Taking the long
time limit, s-1, the time-independent radiance can be
expressed with this propagation kernel as

Lðx,n̂Þ ¼

Z
d3xu

Z
dOðn̂uÞ Kðx,n̂;xu,n̂uÞSðxu,n̂uÞ, ð6Þ

where

Kðx,n̂;xu,n̂uÞ ¼

Z 1
0

ds Gðs,x,n̂;xu,n̂uÞ: ð7Þ

The propagation kernel G has an exact formal expression in
terms of a Feynman path integral. This expression is derived in
the appendix. The path integral explicitly examines every
possible path of length s from the ‘‘starting point’’ xu and
‘‘starting direction’’ n̂u, which ends at the point x and direction
n̂. Each path is characterized by its unit tangent vector b̂ðsuÞ at
each point 0rsurs along the path. Because each path starts at
xu and ends at x, the FPI must only include paths which satisfy

x�xu¼

Z s

0
dsub̂ðsuÞ: ð8Þ

Each path contributes a weight factor W in the FPI. The
weight is related to how much scattering occurs along the
path. The amount of scatter depends on the curvature of the
path, kðsuÞ, where

db̂ðsuÞ=dsu¼ kðsuÞN̂ðsuÞ ð9Þ

and N̂ is the normal to the path in the sense of Frenet–Serret
curves. Using the curvature in this way is a choice of
convenience to simplify notation. It is not meant to imply
that the paths have smooth tangents, and the FPI obtained
below does not require them. The scattering weight also
depends on the phase function and scattering coefficient.
The FPI derivation in the appendix introduces a ‘‘momen-
tum’’ variable pðsuÞ at each point of the path, which is
integrated over all possible momentum configurations. The
weight is explicitly expressed as the functional integral1

Wðs,kÞ ¼
Z
½dp�exp i

Z s

0
dsupðsuÞ � N̂ðsuÞkðsuÞ

� �

�exp

Z s

0
dsubð ~ZðjpðsuÞjÞ�1Þ

� �
ð10Þ

1 Throughout this paper, ½d�� denotes a differential element defined

with respect to a natural measure; see Appendix A.
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