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a b s t r a c t

Accurate radiative transfer models are the key tools for the understanding of radiative

transfer processes in the atmosphere and ocean, and for the development of remote

sensing algorithms. The widely used scalar approximation of radiative transfer can lead

to errors in calculated top of atmosphere radiances. We show results with errors in the

order of78% for atmosphere ocean systems with case one waters. Variations in sea

water salinity and temperature can lead to variations in the signal of similar magnitude.

Therefore, we enhanced our scalar radiative transfer model MOMO, which is in use at

Freie Universität Berlin, to treat these effects as accurately as possible. We describe our

one-dimensional vector radiative transfer model for an atmosphere ocean system with

a rough interface. We describe the matrix operator scheme and the bio-optical model

for case one waters. We discuss some effects of neglecting polarization in radiative

transfer calculations and effects of salinity changes for top of atmosphere radiances.

Results are shown for the channels of the satellite instruments MERIS and OLCI from

412.5 nm to 900 nm.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

An accurate and flexible remote sensing scheme has a
broad range of possible applications in the field of atmo-
spheric and oceanic research. Virtually, all analyses of
measurements made by radiance sensors need radiative
transfer (RT) calculation results to derive meaningful
physical quantities. In this paper we describe a radiative
transfer scheme which is able to calculate the vector
radiance field in an atmosphere ocean system (AOS) with
a wind blown interface. We assume that the system has
no horizontal, but arbitrary vertical structure. Hence, the
scheme is a one-dimensional vector radiative transfer
solver. Similar systems have been described in the past
and recent literature, such as the works from Kattawar
and Adams [1], Nakajima and Tanaka [2], Takashima [3],
Chami [4], Fell and Fischer [5], Chowdhary et al. [6], He [7]

and Zhai [8] to name a few. The work described in this
paper is based on the radiative transfer model MOMO
which is itself based on the work of Fischer and Grassl [9],
Fell and Fischer [5] and Bennartz and Fischer [10]. It has a
long tradition of successfully developed remote sensing
applications, including the sensing of lakes [11], analysis
of hyper spectral data to derive surface fluorescence
signals [12], the analysis of ocean color data from MERIS
measurements [13], and the retrieval of land surface
pressure from MERIS data [14]. We decided to upgrade
the MOMO FORTRAN code to account for polarization in
order to base the development of future remote sensing
algorithms on accurate RT calculations.

In Sections 2 and 3 we introduce the radiative transfer
equation and the matrix operator method. In Sections 4
and 5 we describe the models for pure ocean water and
the bio-optical model for in water constituents. Section 6
is devoted to the validation of the code and in Section 7
we describe first applications as mentioned in the
abstract.
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2. Radiative transfer equation

The differential radiative transfer equation (RTE) given
in Eq. (1) states that the change of the diffuse light field
@tLðtÞ with respect to the optical thickness t is propor-
tional to both the light field itself, and the diffuse sources
JðtÞ at this optical depth:

m@tLðtÞ ¼�LðtÞþ JðtÞ: ð1Þ

The light field is described by a real four-dimensional
Stokes vector [15,16] (and references therein). To find
unique solutions, it is necessary to define boundary
conditions that define the top and the bottom of the
atmosphere. Eq. (2) states that there is no diffuse down-
ward directed radiation at the top of the atmosphere, and
Eq. (3) states that the upward directed radiation at the
bottom of the AOS is given by the reflection of the
downward directed radiation. The surface reflection is
modeled using a real 4�4 reflection matrix Rðm,f,m0,f0Þ
which depends on the direction of incidence (m0,f0) and
reflection (m,fÞ

Lðt¼ 0,mo0Þ ¼ 0, ð2Þ

Lðt¼ t0,m40,fÞ ¼
Z 1

0
dm0

Z
df0 Rðm,f,m0,f0ÞLðt0,m0,f0Þ:

ð3Þ

The complexity of the RTE comes from the coupling of
the field by the scattering source term J, which is shown
in Eq. (4). It consists of a scattering term for the direct
solar radiation and a scattering term for the diffuse field

m d

dt�1

� �
Lðt,m,fÞ ¼o0Pðt,m,f,ms,fsÞe

�t=ms S0|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
single scattering term

þo0

Z
dm0 df0 Pðt,m,f,m0,f0ÞLðt,m0,f0Þ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

diffuse scattering term

, ð4Þ

where S0 is the solar constant, the solar position is set to
ðms,fsÞ, and o0 is the single scattering albedo. We assume
that the scattering matrix P only depends on f�f0 and
expand L and P in a Fourier series with the expansion
coefficient m. The equation then decouples into a series of
equations in Fourier space that are now independent of
the viewing azimuth angle:

m d

dt
�1

� �
Lmðt,mÞ ¼o0Pmðm,msÞe

�t=ms

þo0pð1þd0mÞ

Z
dm0 Pmðm,m0ÞLmðt,m0Þ: ð5Þ

We discretize Eq. (5) for numerical treatment on a
computer system, and split the light field into parts for
the upper and lower hemisphere:

Lþm ðt,mÞ ¼ Lmðt,m40Þ, ð6Þ

L�mðt,mÞ ¼ Lmðt,mo0Þ: ð7Þ

Integrations are then replaced by summing over the
integrand at Gaussian quadrature points mi and

multiplying with the Gauss Lobatto weights ci:Z
dm f ðmÞ �

Xk

i ¼ 1

f ðmiÞci: ð8Þ

We define matrices that contain the Gaussian points,
weights, phase matrix values, and source term values:

c¼ diagðc1, . . . ,ckÞ, ð9Þ

M¼ diagðm1, . . . ,mkÞ, ð10Þ

½P7 , 7
m �i,j ¼ Pmð7mi,7m0jÞ, i,j 2 1, . . . ,k, ð11Þ

½Jþm �i,j ¼o0S0½P
þ þ
m �i,je

t=mi , ð12Þ

½J�m�i,j ¼o0S0½P
�þ
m �i,je

t=mi , ð13Þ

where d0m is the Kronecker delta. Defining the matrices
Gþ þ=��=þ�=�þm and Sþ=� as abbreviations:

Gþ þm ¼M�1
ð1�o0pð1þd0mÞP

þ þ
m cÞ, ð14Þ

Gþ�m ¼M�1o0pð1þd0mÞP
þ�
m c, ð15Þ

G�þm ¼M�1o0pð1þd0mÞP
�þ
m c, ð16Þ

G��m ¼M�1
ð1�o0pð1þd0mÞP

��
m cÞ, ð17Þ

S7
m ¼M�1J7m ð18Þ

we can insert them into Eq. (5) and write the result as a
compact matrix equation:

d

dt
Lþ

L�

 !
¼
�Gþ þm Gþ�m

�G�þm G��m

 !
Lþm
Lþm

 !
þ

Sþm
�S�m

 !
: ð19Þ

3. Matrix operator method

The method is based on the interaction principle
which has been described by Twomey et al. [17] and later
by Grand [18]. It includes any order of scattering and is
applicable to systems with any optical thickness.

The interaction principle states that the upward directed
light field at a given optical thickness depends linearly on
the transmitted light field from a layer at higher optical
thickness, and the downward directed intensity at the same
level. The interaction coefficients are called reflection rij and
transmission tij and a schematic is shown in Fig. 1. This
holds analogously for the downward directed light field at
the lower level:

Lþ ðt2Þ ¼ t21Lþ ðt1Þþr12L�ðt2Þþ J21, ð20Þ

L�ðt1Þ ¼ r21Lþ ðt1Þþt12L�ðt2Þþ J12: ð21Þ

Stating the interaction principle for two consecutive
atmospheric layers with three boundaries, one can elim-
inate the transmission and reflection operators of the
intermediate layer. By writing the resulting equations in
the same form as the interaction principle, the transmis-
sion and reflection operators of the combined layers can
be expressed as [17,19,20,1,5]:

t31 ¼ t32ð1�r12r32Þ
�1t21, ð22Þ
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