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ABSTRACT

In diffuse optical tomography, light transport theory is used to describe photon
propagation inside turbid medium. A commonly used simplification for the radiative
transport equation is the diffusion approximation due to computational feasibility.
However, it is known that the diffusion approximation is not valid close to the sources
and boundary and in low-scattering regions. Fokker-Planck equation describes light
propagation when scattering is forward-peaked. In this article a numerical solution of
the Fokker-Planck equation using finite element method is developed. Approach is
validated against Monte Carlo simulation and compared with the diffusion approxima-
tion. The results show that the Fokker-Planck equation gives equal or better results
than the diffusion approximation on the boundary of a homogeneous medium and in
turbid medium containing a low-scattering region when scattering is forward-peaked.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

In diffuse optical tomography (DOT), the goal is to
reconstruct the optical properties of tissues using bound-
ary measurements of scattered near infrared light. The
imaging modality has potential applications for example
in detection of breast cancer, neonatal brain imaging and
functional brain activation studies [1,2]. In the measure-
ment set-up, a set of optical fibers, optodes, are attached
on the boundary of the object in measurement and source
positions. Near infrared light is guided into the object at
one source position at a time and transmitted light is
measured from all the measurement positions using light
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sensitive detectors. Then, this measurement process is
repeated for all source positions.

The image reconstruction in DOT is a nonlinear ill-
posed inverse problem. The iterative solution of this
problem requires several solutions of the forward pro-
blem. Moreover, due to ill-posedness of the reconstruc-
tion problem, even small errors in the modelling can
produce large errors in reconstructions. Therefore, an
accurate and computationally feasible forward model is
needed.

Light propagation in biological tissues is governed by
the transport theory [3,4]. This leads to describing the
multiple scattering phenomenon in biological tissues
using the radiative transport equation (RTE). Due to
computational complexity of the RTE, different approx-
imations have been developed to ease up the computation
of the forward problem. A common approximation is the
P, approximation where the solution of the RTE is
expanded into series of spherical harmonics.
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The most often used model for the solution of the
forward problem in DOT is the diffusion approximation
(DA) which is a special case of the P; approximation. The
DA is computationally feasible but it has limitations in
accuracy; it fails to describe light propagation accurately
in low-scattering regions as well as in the proximity of the
light source and boundaries [1,5].

Recently there has been a growing interest in using
other approximations of the RTE as a forward model. The
idea of using the Fokker-Planck equation as the forward
model in DOT was introduced in [6]. The Fokker-Planck
equation can be used to describe light propagation
accurately when scattering is strongly forward dominated
[7]. This is the case in biological tissues [8,6].

The derivation of the Fokker-Planck equation for light
transport can be found in [9] and for particle transport in
[10]. In the derivation of the Fokker-Planck equation for
light transport, the scattering probability distribution is
approximated by a sum of delta function and a second order
correction [9]. This approximation explains the limits of the
Fokker-Planck equation. It cannot describe the light
propagation accurately when the scattering is not forward
dominated, but on the other hand when it is the Fokker—
Planck equation offers a good model for light propagation.

There are few numerical solutions to the Fokker-
Planck equation. A numerical solution for the Fokker-
Planck equation using discrete ordinates method was
developed for particle transport in [11]. In [12], a method
for computing Green’s function for the Fokker-Planck
equation as an expansion in plane wave modes was
developed. The plane wave modes for the Fokker-Planck
equation were calculated using finite difference approx-
imation. The DOT reconstruction of the scattering and
absorption coefficients using the Fokker-Planck equation
as a forward model was presented in [13]. The forward
problem was solved numerically using the finite differ-
ence method and the inverse problem was solved using a
transport-backtransport method developed in [14].

In this paper, a finite element solution of the Fokker—
Planck equation is introduced. The finite element method
(FEM) is a flexible approach when implementing different
boundary conditions and handling complex geometries. It
has successfully been used in numerical solution of the light
transport problems [15-17]. In this paper both spatial and
angular variables are discretized using the FEM when
solving the Fokker-Planck equation. A similar approach
has earlier been used in solution of the RTE and the radiative
transfer problem of ionizing radiation [17,18]. To the
authors knowledge the Fokker-Planck equation has not
yet been solved using the finite element method.

In the numerical solution of the RTE, dense angular
dicretization is needed in order to describe light propagation
accurately in strongly scattering medium [13]. Therefore,
large computational resources are needed in the solutions of
the RTE. The Fokker-Planck equation, on the other hand,
assumes that the scattering is forward peaked. Thus, coarser
angular discretization can be used in the numerical
computation compared to the RTE, leading to smaller
amount of computation load and time [13].

The rest of the paper is organized as follows. In Section
2, we give a short review of the RTE, the DA, and the

Fokker-Planck equation. In Section 3, we derive a finite
element solution for the Fokker-Planck equation. In
Section 4, we test the proposed FE-model with simula-
tions. In Section 5, conclusions are given.

2. Light transport models

Let Q c R" be the physical domain and n=2,3 be the
dimension of the domain. In addition, let § € "1 denote a
unit vector in the direction of interest.

The frequency domain version of the RTE is of the form

Lors)+3 - VOrdH)+ird) = plprH+ard. (1)

where i is the imaginary unit, c is the speed of light in
medium, w is the angular modulation frequency of the
input signal, q(r,5) is the source inside Q, ¢(r.$) is the
radiance, p, = p (r) and p, = u,(r) are the scattering and
absorption parameters of the medium and L is the
scattering operator defined as

Lor) =g+ | OGS0 as. @

The scattering phase function ©@(3,8) describes the
probability density for a photon to scatter from direction
§' to direction $. In this study the domain is assumed to be
isotropic in the sense that probability of scattering
depends only on the relative angle, not on the absolute
angles, i.e. ©(5,5") = O(8 - §'). An often used phase function
for isotropic materia is the Henyey-Greenstein scattering
function [19] which is of the form

)
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where parameter g defines the shape of the probability
distribution. Values of g are in the range from —1 to 1, for
g <0 scattering is backward dominated and for g>0
scattering is forward dominated. When g=0, scattering
phase function is a uniform distribution. In biological
tissues, g is typically close to 1.

In DOT, a natural boundary condition for the RTE is the
so-called vacuum boundary condition which assumes that
no photons travel in an inward direction at the boundary
02, thus
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where f denotes the outward unit normal on 622 [1]. The
vacuum boundary condition can be modified to take into
account a boundary source ¢g(r,S) at source position
& C 09,
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Photon density is defined as an integral of the radiance
over angular directions
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