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The far field within the context of the Lorenz–Mie theory and the T-matrix formulation

is usually expressed on the basis of the asymptotic properties of vector spherical waves.

The radiation condition is taken into account by employing proper vector spherical

functions as the expansion basis of the scattered field. The asymptotic behavior of the

Hankel function is obtained from differential equations. The asymptotic far field can also

be obtained from the Kirchhoff surface integral equation, in which the radiation

condition has been implemented when it is derived from the Maxwell equations. This

note is to present an explicit establishment of the relationship between the asymptotic

far field and the near field in the Lorenz–Mie theory and the T-matrix formulation

through the Kirchhoff surface integral.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

The Lorenz–Mie theory [1] and the T-matrix [2]
formulation provide exact solutions for the scattering of
electromagnetic waves by small particles. It has been
demonstrated that the Lorenz–Mie theory is a special case
of the T-matrix method when the latter is applied to
spheres [3]. In the two methods, the incident, scattered
and internal fields are expanded in terms of vector
spherical wave functions. A recent paper by Mishchenko
[4] discussed the fundamental concepts of electromag-
netic scattering. The expansion coefficients in the Lor-
enz–Mie theory and the T-matrix formulation are
determined from the boundary condition and extended
boundary condition (EBC), respectively. Two aspects
associated with the T-matrix formulation should be
addressed. First, the method to calculate the T-matrix is
not restricted to EBC as other methods can be employed
[5–7]. Second, other expansion bases (e.g., vector spher-
oidal/ellipsoidal wave functions) can be employed to
expand the electromagnetic fields [8,9]. In this paper,

the scattered field is written in the form of

~E
s
ð~rÞ ¼

X1
n¼1

Xn

m¼�n

½pmn
~Mmnðk~rÞ þ qmn

~Nmnðk~rÞ�; ð1Þ

where M
*

mn and N
*

mn are the vector spherical wave
functions, which are transverse at infinity [3,10], k is the
wave number, and pmn and qmn are the expansion
coefficients. The vector spherical wave functions are
related to vector spherical harmonics [3] given by

M
*
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where hð1Þn ðkrÞ is the Hankel function of the first
kind, C

*

mn, B
*

mn, and P
*

mn are vector spherical harmo-
nics and gmn is a defined constant and equal toffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2n� 1Þðn�mÞ=4pðnþ 1ÞðnþmÞ

p
. The solution in the

radiation zone can be expressed via the asymptotic forms
of M

*

mn and N
*

mn [3] as follows:

M
*

mnðkr; y;jÞ ¼ ð�iÞnþ1eikr

kr
gmnC

*

mnðy;fÞ; ð4Þ

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/jqsrt

Journal of Quantitative Spectroscopy &
Radiative Transfer

ARTICLE IN PRESS

0022-4073/$ - see front matter & 2009 Elsevier Ltd. All rights reserved.

doi:10.1016/j.jqsrt.2009.10.004

� Corresponding author. Tel.: þ1979 845 4923.

E-mail address: pyang@ariel.met.tamu.edu (P. Yang).

Journal of Quantitative Spectroscopy & Radiative Transfer 111 (2010) 515–518

www.elsevier.com/locate/jqsrt
dx.doi.org/10.1016/j.jqsrt.2009.10.004
mailto:pyang@ariel.met.tamu.edu


N
*

mnðkr; y;jÞ ¼ ð�iÞneikr

kr
gmn B

*

mnðy;fÞ: ð5Þ

Note that the expansion of the scattered field in terms of
M
*

mn and N
*

mn in Eq. (1) is due to the above asymptotic
behaviors, and has taken into account the radiation
condition. The preceding asymptotic properties are ob-
tained by analyzing the differential equation satisfied by
the Hankel function. Specifically, the scattered far field is
given by

E
*s

ð r
*
Þ ¼

eikr

�ikr
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i�ðnþ1Þgmn½�ipmnC
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þ qmn B
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where ys and fs are the polar zenith angle and azimuthal
angle of the scattering direction, respectively.

The far field can also be formulated in terms of the so-
called Kirchhoff surface integral [11]:

E
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ð r
*
Þ ¼

eikr

�ikr
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where r̂ is the unit vector pointing to the observation

position, E
*

and H
*

are electric and magnetic fields on an

arbitrary surface enclosing the particle, and n̂s is the

outward normal direction at the position r
*
0. When the

refractive index of the particle is equal to unity, E
*

and H
*

are equal to the incident electromagnetic fields and E
*s

is

zero. Therefore, E
*

and H
*

in Eq. (7) can be either the
scattered field or the total field. In this method,
the radiation condition has been incorporated into the
integral (7), when it is derived from the Maxwell
equations. The Huygens principle is explicit in this
formulation.

Fundamentally, the scattered field expressed in formula
(1) should satisfy the integral in Eq. (7). In appearance, the
near field and far field are radially correlated. If we
substitute Eq. (1) and the associated magnetic field into
Eq. (7), the same solution given by Eq. (6) can be obtained.
This process has been performed numerically for the
scattering by spheres [12] to examine the accuracy the
implementation of near-to-far field transformation in
the finite-difference time-domain (FDTD) method. In the
following discussion, we will show that the same asympto-
tic formulation can be analytically obtained from Eq. (7). To
the best of our knowledge, although this relation is implied,
it is not explicitly proven in the literature. For convenience,
we rewrite Eq. (7) as two equations:
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where âs
and b̂

s
are two unit vectors parallel and

perpendicular to the plane defined by the z axis and the
scattering direction, as illustrated in Fig. 1. In a spherical
coordinate system, we have

âs
¼ ŷ

s
; b̂

s
¼ �f̂

s
: ð10Þ

If the incident field is along the z axis, this plane is
called the scattering plane and ŷ

s
is the scattering

angle.

2. Expansion of polarized plane wave

To analytically integrate the integrals in Eqs. (8) and
(9), it is important to expand the polarized plane waves
b̂

s
e�ikr̂ � r

*
0

and âs
e�ikr̂ � r

*
0

in terms of vector spherical wave
functions as follows:
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where Rg� ~Mmn and Rg�N
*

mn are the conjugates of the
regular vector spherical functions, which are defined by
replacing the Hankel function in Eqs. (2) and (3) by the
spherical Bessel function. To determine the coefficients,
we consider ab;mn as an example, given by

ab;mn ¼
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Fig. 1. Illustration of the incident direction k̂
i
, scattered direction r̂ and

associated unit vectors. Y is the scattering angle. When the incident

plane wave is along the z axis, ys is equal to the scattering angle.
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