
INTEGRATION, the VLSI journal 40 (2007) 20–27

FPGA implementations of the ICEBERG block cipher

F.-X. Standaert�, G. Piret, G. Rouvroy, J.-J. Quisquater

UCL Crypto Group, Place du Levant, 3, B-1348 Louvain-La-Neuve, Belgium

Abstract

This paper presents field programmable gate array (FPGA) implementations of ICEBERG, a block cipher designed for reconfigurable

hardware implementations and presented at FSE 2004. All its components are involutional and allow very efficient combinations of

encryption/decryption. The implementations proposed also allow changing the key and encrypt/decrypt ðE=DÞmode for every plain text,

without any performance loss. In comparison with other recent block ciphers, the implementation results of ICEBERG show a significant

improvement of hardware efficiency. Moreover, the key and E=D agility allow considering new encryption modes to counteract certain

side-channel attacks.

r 2006 Elsevier B.V. All rights reserved.

Keywords: Block ciphers; Hardware implementations; FPGAs

1. Introduction

In October 2000, National Institute of Standards and
Technology (NIST) selected Rijndael as the new Advanced
Encryption Standard. The selection process included
performance evaluation on both software and hardware
platforms. However, as implementation versatility was a
criteria for the selection of the AES, it appeared that
Rijndael was not optimal for reconfigurable hardware
implementations. For example, its highly expensive sub-
stitution boxes may be a bottleneck in certain contexts. The
combination of encryption and decryption in hardware is
usually another critical point (e.g. see [14–16,21]).
ICEBERG is a block cipher designed for efficient

reconfigurable hardware implementations. It is based on an
involutional structure so that the forward and inverse
operation of the cipher may be performed with exactly the
same hardware. All its components easily fit into the 4-bit
input lookup tables of FPGAs, and its key scheduling allows
the round keys to be derived ‘‘on the fly’’ in encryption and
decryption mode. In addition to hardware efficiency, the key
and E=D agility allow considering new encryption modes to

counteract certain side-channel attacks. In practice, very low-
cost hardware crypto-processors and high-throughput data
encryption are potential applications of ICEBERG.
This paper presents FPGA implementations of ICEBERG

and compares their performances with the ones of recent
block ciphers (e.g. AES and NESSIE candidates). Although
ICEBERG implementations offer features that most block
ciphers do not provide (e.g. key and E=D agility), its
implementation results exhibit a significant improvement of
hardware efficiency. For this purpose, we investigated various
contexts (loop and unrolled implementations, with or without
feedback) on the recent Xilinx Virtex-IIs FPGAs.
The paper is structured as follows. Section 2 briefly

presents the specifications of ICEBERG and Section 3
describes our FPGA design methodology. Section 4 lists
the combinatorial cost of the block cipher components.
The implementation results for various architectures are in
Section 5 and comparisons with other block ciphers are in
Section 6. Resistance against side-channel analysis is briefly
discussed in Section 7. Finally, conclusions are in Section 8.

2. Specifications

2.1. Block and key size

ICEBERG operates on 64-bit blocks and uses a 128-bit
key. It is an involutional iterative block cipher based on the

ARTICLE IN PRESS

www.elsevier.com/locate/vlsi

0167-9260/$ - see front matter r 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.vlsi.2005.12.008

�Corresponding author.

E-mail addresses: standaert@dice.ucl.ac.be (F.-X. Standaert),

piret@dice.ucl.ac.be (G. Piret), rouvroy@dice.ucl.ac.be (G. Rouvroy),

quisquater@dice.ucl.ac.be (J.-J. Quisquater).

www.elsevier.com/locate/vlsi


repetition of 16 identical key-dependent round functions.
In the next subsections, we briefly present the algorithm. A
more detailed description can be found in the original
paper [1].

2.2. The round function

The round function is pictured in Fig. 1, where we
distinguish a non-linear layer and a linear diffusion layer.

The non-linear layer is built from the parallel application
of 8� 8 substitution boxes to the cipher state. For
efficiency purposes, these boxes are constructed from
smaller 4� 4 S-boxes S0, S1 and bit permutations P8
(i.e. 8-bit wire crossings).

The linear diffusion layer is built from bit permutations
P64 (i.e. 64-bit wire crossings), bit permutations P4 (i.e. 4-
bit wire crossings), bitwise key additions (denoted as � in
the figure) and small 4� 4 diffusion boxes D. These boxes
perform a simple multiplication:

y3

y2

y1

y0

0
BBBB@

1
CCCCA ¼

0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

2
6664

3
7775�

x3

x2

x1

x0

0
BBB@

1
CCCA,

where every output bit is a� operation between three input
bits. It is therefore efficiently combined with the key
addition inside a single 4-input LUT.

2.3. The key schedule

The key scheduling process consists of key expansion
and key selection.
The key expansion expands the cipher key K into a

sequence of keys K0;K1; . . . ;K16. We set the initial key
K0 ¼ K . The following keys are obtained by a keyround
function so that: Kiþ1 ¼ keyroundðKiÞ.
The keyround is pictured in Fig. 2, where we distinguish a

conditional shift layer, bit permutations P128 (i.e. 128-bit
wire crossings) and S-boxes S0. The conditional shift
operation depends on a round constant C that will be
discussed further.
Finally, the key selection first performs a simple

compression function that selects 64 bytes of Ki having
odd indices. Thereafter, a 4� 4 key selection box is applied
in parallel to every 4-bit key-block. It performs the
following boolean operation:

yð0Þ ¼ ðxð0Þ � xð1Þ � xð2ÞÞ � sel _ ðxð0Þ � xð1ÞÞ � sel,

yð1Þ ¼ ðxð1Þ � xð2ÞÞ � sel _ xð1Þ � sel,

yð2Þ ¼ ðxð2Þ � xð3Þ � xð0ÞÞ � sel _ ðxð2Þ � xð3ÞÞ � sel,

yð3Þ ¼ ðxð3Þ � xð0ÞÞ � sel _ xð3Þ � sel.

Depending on the value of a selection bit sel, we obtain the
round key RKi

0 or RKi
1 for round i.

ARTICLE IN PRESS

Fig. 1. The round function.

F.-X. Standaert et al. / INTEGRATION, the VLSI journal 40 (2007) 20–27 21



Download English Version:

https://daneshyari.com/en/article/542971

Download Persian Version:

https://daneshyari.com/article/542971

Daneshyari.com

https://daneshyari.com/en/article/542971
https://daneshyari.com/article/542971
https://daneshyari.com

