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The differential operator of polarized radiative transfer equation is examined in case of

homogeneous medium in Euclidean three-dimensional space with arbitrary curvilinear

coordinate system defined in it. This study shows that an apparent rotation of

polarization plane along the light ray with respect to the chosen reference plane for

Stokes parameters generally takes place, due to purely geometric reasons. Analytic

expressions for the differential operator of transfer equation dependent on the

components of metric tensor and their derivatives are found, and the derivation of

differential operator of polarized radiative transfer equation has been made a

standard procedure. Considerable simplifications take place if the coordinate system

is orthogonal.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Transfer equation for polarized radiation has a long
history of development. One of its early versions was that
by Chandrasekhar [1] for Rayleigh scattering in plane–
parallel layer. Not attempting to make any substantial
historical review of the further development nor to study
scientific priority ownerships I shall briefly refer to some
of the most important forms of the transfer equation
available in the literature.

Kuščer and Ribarič [2] seem to be the first who split
the scattering kernel for polarized radiation within
isotropic medium into generalized spherical functions.
Transfer equation in case of spatially variable real part
of the refraction index and consequently curvilinear ray
paths can be found in [3,4]. Transfer equation in aniso-
tropic magnetized plasma with birefringence was widely

reviewed in [5], while polarized radiative transfer includ-
ing Compton effect was considered in [6] and elsewhere.

Along with continuously growing number of observa-
tions of such astronomical objects where general relativ-
ity is essential, theoretical consideration of radiation
transfer in curved spacetime has been steadily develo-
ping—see, for example, [7–11]. It was shown in [10] that
while the point of observation moves along the light ray,
the linear polarization plane seemingly rotates in the
vacuum due to the rotation of the polarization reference
plane (one can call it Stokes reference plane) around the
direction of propagation.

Another case of rotation of polarization plane due
to essentially geometric reasons was remarked in
[12, Paragraph 85], namely, this effect occurs if the
electromagnetic radiation in medium with inhomoge-
neous refraction index moves along a curve with nonzero
torsion (in terms of geometrical optics approximation).
A quite fundamental investigation of the rotation of linear
polarization plane as well as conversions between linear
and elliptic polarization during the propagation of radia-
tion in inhomogeneous and/or anisotropic medium was
done in [13].
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In fact, similar effects can be observed without any
gravitation field, in homogeneous isotropic medium. This
paper shows that very often the true rotation of Stokes
reference plane and the corresponding apparent rotation of
linear polarization plane around the direction of propaga-
tion in vacuum takes place in Minkowski (i.e. flat) spacetime
and consequently Euclidean space, with spatially constant
real part of the effective refractive index (determined by
both the refractive index of the host medium and by
extinction on sparsely placed polydisperse scattering parti-
cles), on condition that the space is considered within the
framework of some curvilinear coordinate system. The
simplest example is cylindrical coordinate system with
radial spatial direction taken as both the polar axis for the
determination of the direction of propagation of radiation
and simultaneously as one of the two directions defining
Stokes reference plane. This certainly is not a physical
rotation of polarization plane. The observable effect arises
from the fact that the Stokes reference plane, as a rule, is
tied to the spatial coordinate system and its basis vectors.

This effect requires a generalized consideration. While
modeling some object, the spatial coordinate system
should reflect the symmetry of the physical problem,
and there are physical objects of many different forms
in the nature. One can mention bipolar (approximately
toroidal, conical and ellipsoidal) dust–gas nebulosities
around late-type stars and protoplanetary nebulae in
our Galaxy—see, e.g. pictures in [14–16]. Undoubtedly,
the mentioned astronomical objects are not perfectly
symmetric, and the symmetry of the radiation field
typically is lower than the symmetry of the distribution
of matter. This is also true when modeling not perfectly
plane–parallel nor perfectly spherical stellar and plane-
tary atmospheres (with active regions, sunspots, clouds,
etc.) in plane–parallel or spherical approximation.

The object of this study is the differential operator of
vector radiative transfer equation because this operator is
dependent on the chosen coordinate system. The other
terms (extinction, scattering and primary sources) are
essentially the same in all coordinate systems. It is
stressed that the ladder specific coherence dyadic
[17,18] is a tensor, and its spatial derivative should be
taken as the absolute derivative [19,20]. Tensor analysis
proves to be useful in order to obtain full expression for
the differential operator of vector radiative transfer equa-
tion in arbitrary curvilinear coordinate system by means
of unified standardized routine calculation—similarly as
to calculate divergence or curl of some vector in some
coordinate system is a routine task, without necessity to
make any tricks of differential geometry.

Section 2 introduces the designations for general
spatial coordinate system, defines the directional angles
of ray propagation, and presents calculations of the spatial
derivatives of directional angles along light ray. Section 3
reviews the tensor properties of dyadics used in the
theory of electromagnetic scattering [17,18]. The correct
form of vector integro-differential radiative transfer equa-
tion in arbitrary curvilinear coordinate system is derived
in Section 4. Section 5 briefly summarizes the main
results. Section 6 specifies the role of funding sources
and the limits of their influence on this paper.

2. Spatial and angular coordinates

In this paper vector, tensor and linear connection
indices are used as follows: if the letters i, j, k, l, y are
written in some product as both lower (covariant) and
upper (contravariant) indices, for example, in expressions
of type EiE

i, Gi
klE

kOl, Gi
ki, then the summation over the

repeated indices within the limits of dimensionality of
space is assumed, as it is commonly adopted in tensor
calculus [19]. But if the first three letters of Latin alphabet
(a, b, c) are used the same way (for example, Ga

baEb), no
summation occurs; a, b and c are assumed to be fixed (this
fixation will be done a little bit below).

Let us consider three-dimensional Euclidean space
with some coordinate system xi, i¼1, 2, 3, defined in it.
Let gik be the covariant components of the metric tensor
[19–22], i.e. square of length of the arc element is

ds2
¼ gik dxi dxk

ð1Þ

(following [21], I use the designation gik for the metric
tensor of three-dimensional space, in order to preserve
the more usual designation gik for the metric tensor of
four-dimensional spacetime). Let us assume that in
almost all space the metric tensor has a finite determinant

G�def
det gik40, ð2Þ

with possible exception on a finite set of surfaces and
lines (with three-dimensional Lebesgue’s measure equal
to zero), where G can be either unbounded or zero.

The contravariant components of the vector X defining
the direction of propagation of radiation can be defined as

Oi
¼

dxi

ds
, ð3Þ

where the derivative of spatial coordinate xi by path s

while moving along the light ray is taken. According to
[19] and [22, Table 6.3-1], in general nonorthogonal
coordinate system one can write either

X¼Oiei ð4Þ

or

X¼Oie
i, ð5Þ

where

ei ¼
@r

@xi
ð6Þ

is the covariant basis vector tangent to the coordinate line
of increasing xi, r being the radius vector,

Oi ¼ gikO
k

ð7Þ

are the covariant components of the vector X, and

ei ¼ gikek ð8Þ

are the contravariant basis vectors. The contravariant
components of the metric tensor gij are defined by

gijgjk ¼ di
k, ð9Þ

J. Freimanis / Journal of Quantitative Spectroscopy & Radiative Transfer 112 (2011) 2134–2148 2135



Download English Version:

https://daneshyari.com/en/article/5429725

Download Persian Version:

https://daneshyari.com/article/5429725

Daneshyari.com

https://daneshyari.com/en/article/5429725
https://daneshyari.com/article/5429725
https://daneshyari.com

