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a b s t r a c t

We introduce the stochastic geometry of a Gaussian random ellipsoid (GE) and, with the

discrete-dipole approximation, carry out preliminary computations for light scattering

by wavelength-scale GE particles. In the GE geometry, we describe the base ellipsoid by

the three semiaxes a � b � c. The axial ratios b:a and c:a appear as two shape

parameters additional to those of the Gaussian random sphere geometry (GS). We

compare the scattering characteristics of GE particles to those of ellipsoids. Introducing

irregularities on ellipsoids smoothens the angular scattering characteristics, in a way

analogous to the smoothening of spherical particle characteristics in the case of GS

particles.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Natural small particles may exhibit irregular shapes
with preferential elongation or flattening. Here the shapes
of such irregular small particles are modeled using the
stochastic geometry of what we call a Gaussian random
ellipsoid (GE). GE is an extension for the Gaussian random
sphere (GS; e.g., [1,2]) and transforms to GS in the limit of
vanishing base elongation and flattening.

Scattering properties for GE particles are studied here
with the discrete-dipole approximation (DDA). DDA is a
flexible tool that can be used to find the numerical
solution of scattering by irregularly shaped particles
(e.g., [3–7]). Among the strengths of DDA is its conceptual
clarity that allows for in-depth studies of physical
mechanisms responsible, e.g., for polarization phenomena
(cf. ray-optics approximation for particles large compared
to the wavelength). In our DDA computations, we utilize
the ADDA code by Yurkin et al. [8].

GS has been utilized in the modeling of compact irregular
particle shapes with a small number of statistical parameters
[9,1,2]. In many applications, there have been two such
parameters: the relative standard deviation of the radial
distance and the power-law index of the covariance function
for logarithmic radial distances. Light scattering by GS
particles has been studied using various approximations, that
is, the ray-optics [2,1,10–14], Rayleigh-volume and Rayleigh–
Gans [15], Rayleigh-ellipsoid [16], and second-order pertur-
bation-series approximations [9,17]. As to treatments that are
close to being exact, scattering by GS particles has been
studied using the volume-integral-equation and DDA meth-
ods [19,18,20–22], and using the finite-difference time-
domain method [23].

Introducing the GE geometry allows for studies of light
scattering by irregular particles where the irregularity is
introduced on a base shape differing from the sphere.
Here we note that Zubko et al. [21] followed an analogous
approach by introducing additional surface irregularities
on particles whose overall shapes were characterized by
the GS geometry. Also, Nousiainen and Muinonen [24]
modeled scattering by randomly oscillating raindrops by
introducing Gaussian deformations on the equilibrium
base shapes.
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Peltoniemi [25] has introduced lognormal statistics for
the ellipsoidal geometry by allowing the mean radial
distance to vary as a function of the spherical polar and
azimuthal angles on the surface of the ellipsoid. In his work,
correlation between two radial distances depends on the
great-circle distance as for the GS geometry. In essence,
Peltoniemi followed the suggestion in [1] for introducing
the lognormal statistics for the ellipsoid problem: one can
multiply the GS geometry by the ellipsoidal shape.

The aforedescribed approach cannot be taken as entirely
satisfactory. The lognormal statistics are introduced so that
the variation is not parallel to the local normal direction on
the ellipsoid surface. The normal direction appears, however,
as the natural direction of surface variation. Also, the earlier
approach results in inhomogeneous statistics on the ellipsoid
surface which manifests itself most significantly for highly
elongated or flattened base ellipsoids.

In Section 2, we present the new stochastic geometry
for what we call the Gaussian random ellipsoid. In
Section 3, we show the first DDA light-scattering simula-
tions for GE particles generated on the basis of the
algorithm presented in Section 2. We close the paper
with conclusions in Section 4.

2. Gaussian random ellipsoid

In GE, lognormal height statistics are imposed on a base
ellipsoid along the local normal direction. As compared to GS,
GE introduces two additional shape parameters: the axial
ratio b:a or, equivalently, the elongation E=(a�b):a; and c:b
or the flattening F=(b�c):b. The ellipsoidal base geometry
raises fundamental issues concerning the homogeneity of the
superimposed statistics. In GS, the great-circle distance
utilized in the correlation of two radial distances can be
interpreted in two ways: first, the distance can be taken
literally as the great-circle angle between the two points;
second, it can be unambiguously mapped to the Cartesian
distance for the two points on the base sphere. In a
corresponding way for GE, the distance between two points
on the base ellipsoid can be measured along the geodesic
connecting the points or as the Cartesian distance between
the points. In the present context, we utilize the Cartesian
distance in correlating heights on the base ellipsoid.

Due to the requirement of height variation along the
local normal vector, further constraints must be introduced
for the mean height corresponding to the mean radial
distance in GS. We define the mean height h0 to coincide
with the minimum radius of curvature for the base ellipsoid
with semiaxes a, b, and c. We assume aZbZc and the
minimum radius of curvature is unambiguously h0 ¼ c2=a.
This implies that the single center point of GS evolves into a
surface of center points for GE and that the surface of center
points is non-ellipsoidal in its shape. Fig. 1 provides a
simplified illustration of the geometry.

We express the Cartesian position of a point on a
sample GE as

rðW,fÞ ¼ r0ðW,fÞ�h0n0ðW,fÞþh0expðsðW,fÞ�1
2b

2
Þn0ðW,fÞ,

ð1Þ

where r0ðW,fÞ and n0ðW,fÞ denote the local position and
unit outward normal vectors on the base ellipsoid,

respectively, and h0 is the mean height discussed above.
The interpretation of the three vectors on the right-hand
side of Eq. (1) is as follows (cf. Fig. 1): first, from the
center point of the base ellipsoid, move to a position on
the surface of the ellipsoid; second, from the surface
position, move to a position on the surface of center
points inside the base ellipsoid; and, third, from the
position on the surface of center points, move to the
position on the actual GE surface. Thus, s is identified as
being the logarithmic height that is a Gaussian random
variable. The variance of s is b2 and the relative variance
of heights is s2 ¼ expðb2

Þ�1. Note, in particular, that the
Cartesian vector rðW,fÞ no longer points in the direction
specified by the spherical coordinates W,f.

Assume next that N random variables s¼ ðs1, . . . ,sNÞ
T

for given spherical coordinates X¼ ðW1,j1; . . . ;WN ,jNÞ
T

obey multivariate normal statistics nN with zero means
and covariance matrix Ss (T is transpose; [26]),
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The covariance-matrix elements are

Ss,ij ¼ b2CsðdijÞ, i,j¼ 1, . . . ,N, ð3Þ

where b2 is the variance and Cs is the correlation function
that depends on the directions i and j through a measure
of their distance dij. We require that Ss be positive
definite, Cs(0)=1, and Cs

0
ð0Þ ¼ 0.

For the spherical coordinates W,f, define the position
vector hðW,fÞ from the corresponding center point to the

Fig. 1. Simplified illustration of the Gaussian random ellipsoid geometry

using a base ellipse with axial ratio a:b=1.0:0.7. S0 denotes the base

ellipse centered at the origin O, f� and f+ denote the focal points of the

base ellipse, and S describes the curve of center points as obtained from

S0 by moving inwards a distance h0 along the local normal direction. h0

corresponds to the minimum radius of curvature on S0. The vectors r0

and r describe positions on the base ellipse and on a sample Gaussian

ellipse, respectively. We show the special case of r0 having the same

x-coordinate as f+ .
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