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a b s t r a c t

The influence of uncertainty in the absorption and scattering coefficients on the solution

and associated parameters of the radiative transfer equation is studied using

polynomial chaos theory. The uncertainty is defined by means of uniform and log-

uniform probability distributions. By expanding the radiation intensity in a series of

polynomial chaos functions we may reduce the stochastic transfer equation to a set of

coupled deterministic equations, analogous to those that arise in multigroup neutron

transport theory, with the effective multigroup transfer scattering coefficients contain-

ing information about the uncertainty. This procedure enables existing transport theory

computer codes to be used, with little modification, to solve the problem. Applications

are made to a transmission problem and a constant source problem in a slab. In

addition, we also study the rod model for which exact analytical solutions are readily

available. In all cases, numerical results in the form of mean, variance and sensitivity are

given that illustrate how absorption and scattering coefficient uncertainty influences

the solution of the radiative transfer equation.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

An important source of error in calculations employing
the radiative transfer (RT) equation arises from uncertain
data values. These errors originate from lack of knowledge
about the absorption and scattering coefficients
(parameters). It is vital, therefore, to know how changes
in these parameters affect the outcome of our calcula-
tions. For example, what are the uncertainties in the
reflection and transmission coefficients in relation to
uncertainties in the absorption and scattering coeffi-
cients? When the uncertainties are relatively small, these
matters can be been handled by perturbation theory [1,2].
However, there is another effective method of dealing

with such a problem which does not have the limitations
of perturbation theory and which may be used for
arbitrarily large parameter uncertainties; namely, poly-
nomial chaos expansions. In order to proceed, therefore,
we deliberately introduce uncertainty into the parameters
of the transport equation. This is done by assuming that
the parameters are functions of a random variable which,
in turn, allows us to prescribe a probability distribution
for the values of the parameters. The polynomial chaos
expansion (PCE) [3–8] will be employed to transform the
stochastic RT equation into a set of coupled deterministic
transport equations for the coefficients in the PCE. By a
further transformation, these coupled equations may be
cast into a form that is analogous to a multigroup neutron
or radiation transport formulation but with probabilistic
matrix elements taking the place of the group-to-group
energy exchange cross sections. The only difference
between the equations derived below from those of
multigroup theory is the presence of coupled boundary
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conditions. This transformation therefore enables us to
use well-established computer codes to solve the asso-
ciated RT equation.

In this paper we will give examples based upon the
one-dimensional RT equation for a slab. Two cases are
considered: (1) a constant source in a bare slab and (2) the
transmission of radiation through a plane slab with an
isotropic source incident on one face. We will solve the RT
equation numerically but because certain analytic solu-
tions exist for the cases we have chosen, we will be able to
compare the PCE method with the exact result for mean
and variance and hence estimate convergence rates. We
also solve the problems using the rod model, for which
exact solutions are also available over the complete range
of distance. The calculations, which use the exact radiative
transfer equation, are carried out by a modification of the
computer code EVENT [9]. The general conclusion is that
the PCE method shows considerable promise and can deal
with a variety of probability distribution functions
describing parameter uncertainty.

It is important to note that a number of other fields of
technology have benefited from the use of PCE to study the
effects of data uncertainty. For example, the uncertainty of
modes of vibration in structural mechanics due to errors in
elastic constants [10], the flow of groundwater in the
geosphere due to rock fractures [11] and uncertainties in
fluid flow due to both geometric uncertainty and basic data
[12]. The extension to radiative transfer is an obvious
extension as we hope to convince the reader.

2. Theory

The radiative transfer (RT) equation for the radiation
intensity Iðr;X; n; nÞ, may be written as [13]

X:rIðr;X; n; nÞþkðn; nÞIðr;X; n;nÞ

¼

Z
dn0
Z

dX0ksðn0; nÞf ðn0-n;X:X0; nÞIðr;X0; n0; nÞ

þSðr;X; n; nÞ: ð1Þ

In Eq. (1) the extinction coefficient kðn; nÞ ¼
kaðn; nÞþksðn; nÞ, where ka and ks are the absorption and
scattering coefficients at frequency n, respectively.
f ðn0-n;X:X0;nÞ is the energy and angle exchange phase
function. Sðr;X; n; nÞ is a source term which itself may
contain uncertainties and is the Planck function and/or an
independent source of photons. The nðx1; x2; . . . ; xNÞ are
independent random variables which will describe the
data uncertainty.

Let us assume that the random intensity can be
expanded in a PCE in the form [3,14]

Iðr;X; n; nÞ ¼
XN

n ¼ 0

Inðr;X; nÞFnðnÞ ð2Þ

where FnðnÞ are the polynomial chaos functions which are
to be determined by the nature of the problem and obey
the orthogonality relation

/FnðnÞFmðnÞS�
Z

R
dnpðnÞFnðnÞFmðnÞ ¼ dnmN2

m ð3Þ

pðnÞ being an appropriate probability weight function of
the random variables n. Eq. (3) defines the normalisation

coefficient Nm. For full details of the concept of polynomial
chaos functions, the reader is referred to Ghanem and
Spanos [3]. However, in the simplest case of one random
variable, x, the polynomials form a complete set of
orthogonal functions with the weight function given by
the appropriate probability distribution [15]. For more
than one random variable, the sequence of polynomials
can be generalised as explained in [3] or [14].

The expansion coefficients Inðr;X; nÞ are to be deter-
mined as we will show below. Inserting Eq. (2) into Eq. (1)
we find

X:r
XN

n ¼ 0

Inðr;X; nÞFnðnÞþkðn; nÞ
XN

n ¼ 0

Inðr;X; nÞFnðnÞ

¼

Z
dn0
Z

dX0ksðn0; nÞf ðn0-n;X:X0; nÞ

XN

n ¼ 0

Inðr;X0; n0ÞFnðnÞþSðr;X; n;nÞ: ð4Þ

Now multiplying Eq. (3) by pðnÞFmðnÞ and averaging
over all the random variables n, leads to

X:rImðr;X; nÞ/F2
mðnÞSþ

XN

n ¼ 0

Inðr;X; nÞ/FmðnÞkðn; nÞFnðnÞS

¼/FmðnÞSðr;X; n; nÞSþ
Z

dn0
Z

dX0
XN

n ¼ 0

Inðr;X0; n0Þ

/FmðnÞksðn0; nÞf ðn0-n;X:X0; nÞFnðnÞS: ð5Þ

Let us now define

Amn ¼
/FmðnÞkðn; nÞFnðnÞS

NnNm
ð6Þ

Bmnðn0-n;X:X0Þ ¼ /FmðnÞksðn; nÞf ðn0-n;X:X0; nÞFnðnÞS
NnNm

ð7Þ

Smðr;X; nÞ ¼/FmðnÞSðr;X; n; nÞS=Nm:

We also define the modified intensity polynomial
chaos expansion coefficient f̂m as

f̂mðr;X; nÞ ¼NmImðr;X; nÞ: ð8Þ

We observe that the matrices A and B are symmetric.
The angular brackets in Eqs. (4)–(7) are defined by

/FmkFnS¼
Z

dnpðnÞkðn; nÞFmðnÞFnðnÞ ð9Þ

where pðnÞ is the weight function associated with PCE
polynomials FnðnÞ. It should be noted that the evaluation
of this matrix element depends on the nature of the
statistics of kðn; nÞ and n. For example, suppose that k
obeys a prescribed probability distribution p1ðkÞ and
suppose that we have decided that the weight function
associated with the PCE polynomial FnðnÞ is pðnÞ; if these
two distributions span different spaces then the integral
(9) as it stands needs interpretation. If we consider the
case where there is only one random variable x then we
can define a uniformly distributed random variable
u 2 ð0;1Þ, and write [16]

u¼

Z k

k0

p1ðk0Þdk0: ð10Þ
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