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a b s t r a c t

The far-field scattered light intensity, or the related phase function, for a spherical

particle is known to display an overall power-law structure when formulated in terms

of the scattering wave vector. Empirically determined patterns in the intensity relating

to the particle size and refractive index are known. The cause of the patterns, however,

has not been satisfactorily explained. This work applies an exact microphysical model to

explain most of the patterns, and specifically, to reveal the physical cause of crossovers

from one power-law to another. A unique aspect of this microphysical approach is

phasor analysis, which provides a visually based way to examine the angle-dependent

wavelet superposition involved in the model. A simple color coding scheme connects

the phasors to the interior of the particle, and it is this connection that reveals the

meaning of the crossovers.

& 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In the far-field zone of a uniform spherical particle, the
scattered light intensity provided by Mie theory is known
to display an overall power-law structure [1,2]. This
power-law structure is seen when the intensity distribu-
tion is formulated in terms of the scattering wave vector
q, rather than in terms of the polar and azimuthal angles.
Patterns appear in the power-law structure as the particle
radius R and refractive index m are varied. An empirically

based study of these patterns reveals simple relationships
between R and the real part of m and characteristic
features in the far-field angular scattered intensity
distribution [1]. These empirical relationships make the
patterns useful in situations where one desires a simple
method to identify estimates for R and Refmg directly
from the scattered intensity, or the related phase function.
Moreover, the simplicity of the patterns allows one to

semi-quantitatively describe the form of the angular
intensity for any spherical particle without recourse to
sophisticated numerical calculation. Since their discovery,
the patterns have received attention in both theoretical
and experimental contexts [3–11]. Examples of laboratory
measurements displaying the patterns can be found in
[1,5,9,12].

In principle, the explanation for the occurrence and
quantitative form of the power-law patterns is contained
in the Mie solution. Unfortunately though, the mathema-
tical complexity of the solution obscures a clear identifi-
cation of their cause and physical significance.
Consequently, simple models have been presented that
explain the patterns using scaling arguments, Huygens’
principle, and ray-tracing [1,8]. While these models can
account for much of the patterns, certain inherent
assumptions prevent them from being convincing and
general explanations.

The purpose of this work is to apply an exact
microphysical model to explain the origin of the patterns
and the physical meaning of their various indicative
features. The following will first present a short review of
the q-space concept, the patterns, and the microphysical
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model. The model will then be applied to the problem of
scattering by a single spherical particle in the weak and
strong refraction regimes. These regimes are quantified by
when the particle’s phase shift parameter r, Eq. (4), is less
than one and greater than one, respectively. A graphically
based technique describing the scattering process, called
phasor analysis, will be applied to both the ro1 and
r41 cases. Although a considerable amount of analysis
will be required, the key points of this work will be to
show that:

� The power-law form of the scattered intensity is
related to the curvature of the particle’s surface.
� Transitions between power-law regimes, called cross-

overs, are caused by the onset of destructive inter-
ference over specific regions within the particle.
� Characteristic length scales of the particle are asso-

ciated with the crossovers.

All in all, this work will provide one with a conceptual
interference-based understanding for the cause of the
overall form of a spherical particle’s far-field scattered
intensity distribution.

2. Background: q-space and the patterns

Consider a spherical particle of volume Vint located at
the origin O of the coordinate system. For simplicity, the
particle is assumed to reside in vacuum and have only
real-valued refractive index m. Illuminating the particle is
a linearly polarized electromagnetic plane wave traveling
in the n̂

inc
direction. The electric field of this incident

wave is given by

Einc
ðrÞ ¼ Einc

o expðikrr̂ � n̂
inc
Þ; ð1Þ

where Einc
o is a constant vector describing the amplitude

and polarization of the wave and k is the wavenumber
given by k¼ 2p=l where l is the vacuum wavelength. All
field quantities in this work are assumed to be time-
harmonic and described by the factor expð�iotÞ, where
o¼ kc, with c being the speed of light. This global time

factor will be suppressed for brevity. A detector is located
at the observation point r, which resides in the horizontal
scattering plane. This plane is perpendicular to the
polarization of the incident field. It will be convenient in
the following to take Einc

o ¼ Einc
o x̂, where Einc

o is a real-

valued constant and n̂
inc
¼ ẑ. Then, the detector resides in

the y2z plane through the origin, see Fig. 1. Also, the
detector is assumed to remain at a fixed radial distance Rl

from the particle, i.e., r¼ Rlr̂, where the size of the
constant Rl is such that r resides in the particle’s far-field
zone following [13].

The power-law patterns appear when the far-field
scattered intensity I is plotted log–log in terms of the
scattering wave vector q, rather than in terms of the polar
scattering angle y. This vector represents the difference in
momentum between the incident plane wave and the far-
field scattered wave in the r̂ direction, see Fig. 1 [22],

q¼ kðn̂
inc
� r̂Þ: ð2Þ

The magnitude of q depends on y as

qðyÞ ¼ 2ksin
y
2

� �
; ð3Þ

and has the units of inverse length. Note that q lies in the
same scattering plane as r. In the following, the depen-
dence of q on y will be tacitly assumed and suppressed for
brevity.

The semi-log plot (a) in Fig. 2 shows the evolution of
the normalized intensity for spherical particles with
various size parameters kR. These curves are generated
from Mie theory following [20] using a refractive index of
m¼ 1:05. Plot (b) shows the same intensity curves, except
plotted log–log as a function of the unitless quantity qR.
One can see from (b) that all of the intensity curves are
roughly bounded by linear envelopes, which given the
log–log scale, indicates an overall power-law dependence
of I on qR. In a sense, one can regard the envelopes as a
coarse average of the more detailed ripple structure. In
contrast, notice that the decay of the curves in (a) with
angle does not clearly display a specific power-law form
nor a transition from one power-law to another. The term
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Fig. 1. Scattering arrangement consisting of a spherical particle illuminated by a linearly polarized plane wave. The observation point r is confined to the

y2z plane at a fixed radial distance Rl from the particle. The polarization of the incident wave is normal to y2z plane. Also indicated is the direction of the

scattering wave vector q, Eq. (2).

M.J. Berg et al. / Journal of Quantitative Spectroscopy & Radiative Transfer 111 (2010) 782–794 783



Download English Version:

https://daneshyari.com/en/article/5429852

Download Persian Version:

https://daneshyari.com/article/5429852

Daneshyari.com

https://daneshyari.com/en/article/5429852
https://daneshyari.com/article/5429852
https://daneshyari.com

