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Abstract

This article presents a two-step procedure for the computation of radiative heat transfer with anisotropic scattering and

reflection. It is based on a concept that the coincident processes of absorption and scattering/reflection can be separated

factitiously. All medium elements and wall surfaces are supposed to be pure-absorbing when receiving incident radiation.

Afterwards they emit the scattered/reflected radiations. The absorption of both the initial and the secondary radiations can

be assessed by the direct exchange area. It is needed to repeat the processes for a few times until the radiations are

substantially absorbed. For anisotropic scattering/reflection, a vector summation obtains the directional distribution of

emissive power. The method is validated by several benchmark computations in terms of emissive power and heat transfer

coefficients. It is shown that the method gives more accurate solution than the isotropic scaling for the heat transfer in

anisotropically scattering media.
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1. Introduction

Radiation Transfer of participating media has applications in furnace designs, semiconductor processes,
optics and environments, to name a few. The conservation law is formulated by a radiative transfer equation
(RTE) in a differential-integral form. Problems arise from the modeling or the calculation of the integration
term which accounts for scattering effects. Researchers have developed many methods [1,2] for this issue,
including exchange-area-based methods (EAM) (e.g., zone method [3], REM2 [4]), multi-flux methods
(e.g., discrete ordinates method [5], finite volume method [6], and YIX method [7]), and stochastic methods
(e.g., Monte-Carlo method (MCM) [8]) or their combinations (e.g., discrete transfer method [9]).

The EAM benefit from their simpleness and efficiency. For a medium with constant radiative properties,
heat transfer calculation becomes a simple algebraic operation over mesh grids as soon as the exchange area is
known. The time taken by equation solving is saved as have to be done by the multi-flux methods. However,
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the EAM’s drawbacks are yet multiple, one of which is the difficulty in the operation of anisotropic scattering
and non-diffuse wall reflection. Hottel and Sarafim [3] and Noble [10] developed a scheme to calculate total
exchange area (TEA) for isotropic scattering. For a system composed of N cells and M surfaces, L

(L ¼ N+M) equations of L dimensions have to be solved. Following the same concept, the scheme is extended
to the simulation of radiation in anisotropically scattering media [11–13], where the method suffers from either
too large matrix or too many equations to be solved. This is prohibitive in practice even for the computation
using a moderate-scale mesh. One remedy is to use the isotropic-scaling method (e.g., the REM2 in [14]).
Unfortunately, the isotropic scaling of phase function does not work at all time [15,16]. Another disadvantage
of EAM is the huge amount of memory for saving exchange area. Both direct exchange area (DEA) and TEA
are L�L-dimensional arrays (in view of reciprocity they are L(L+1)/2-dimensional) so that the memory is
several orders larger than that for solving convection–diffusion equations. In fact, time and memory are just
the two limitations for the radiation computation using fine grids.

The MCM provides one more choice for exchange-area calculation. But the simulation of scattering and
reflection takes additional time because more rays have to be traced in order to get confident statistic
distribution. This increased time will be saved if only DEA is involved.

This paper presents a new DEA-based numerical scheme. It is based on a concept that the coincident
absorption and scattering/reflection processes can be fictitiously separated, i.e., (1) at first all the medium
elements and wall surfaces are supposed to be pure-absorbing when receiving incidence radiation, and (2)
secondly the scattered/reflected radiations are emitted afterwards (say secondary radiations hereafter). Since the
absorption of both the initial and secondary radiations can be assessed by DEA, the operation of the scattering/
reflection process is mostly simplified. The secondary radiations will be substantially absorbed after a few repeats
of the above processes. In the computation only DEA is used and hence the least memory is needed.

The contents are arranged as follows. Section 2 is concerned with the theoretical formulation. Numerical
results are reported in Sections 3 and 4, where the model is discussed with regard to some benchmark problems
and nonlinear scattering models. Remarks for the applications of the model are given in Section 5.

2. Theoretical formulation

We consider a radiative element of a participating medium, where the radiation intensity I at a position r!

in a direction ŝ can be formulated as

dIð~r; ŝÞ

dS
¼ �ðkþ ssÞIð~r; ŝÞ þ kIbðTÞ þ

ss
4p

Z
4p

Ið~r; ŝ0ÞFðŝ � ŝ0ÞdO. (1)

Eq. (1) is the RTE, where k and ss are the absorption and scattering coefficients, respectively. Fðŝ � ŝ0Þ is a phase
function, whereas ŝ0 denotes an incidence direction. Supposing that a wall surface has an emissivity of e, and a
reflectivity of g, in favor of analysis we define an extinction coefficient a and a scattering/reflection albedo o, i.e.,
a ¼ k+ss, o ¼ ss/a for medium elements, and a ¼ e+g ¼ 1, o ¼ g/a for surfaces. For a system composed of
pure-absorbing elements with equivalent absorptivities of ai (i,j ¼ 1,2,y,L), the DEA Dij (i,j ¼ 1,2,y,L) can be
calculated by many methods, such as the Zone method, MCM, or a ray-tracing method, etc. The discussion
hereafter focuses on the approaches of radiative transfer computation by use of Dij.

2.1. Traditional methods

For a scattering medium bounded by reflection walls, Refs. [3,4,10,11–13] have proposed several ways to
conduct the heat transfer simulation using DEA. We give a brief review to those methods. They share the
common feature of the procedure proposed initially by Hottel and Sarafim [3], and hence are referred as
Hottel’s method (HM).

Of an isotropically scattering/reflecting element i, the gross radiosity FiWi is a sum of self-emission
Fi(1�oi)Eb,i and the scattered/reflected radiations oi

PL
j¼1DijW j , i.e.,

FiW i ¼ Fið1� oiÞEb;i þ oi

XL

j¼1

DijW j ; i ¼ 1; 2; . . . ;L, (2)
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