

Journal of Quantitative Spectroscopy & Radiative Transfer 107 (2007) 340–348

Journal of Quantitative Spectroscopy & Radiative Transfer

www.elsevier.com/locate/jqsrt

Detection of elevated tropospheric hydrogen peroxide (H₂O₂) mixing ratios in atmospheric chemistry experiment (ACE) subtropical infrared solar occultation spectra

C.P. Rinsland^{a,*}, P.F. Coheur^{b,1}, H. Herbin^b, C. Clerbaux^c, C. Boone^d, P. Bernath^{d,e}, L.S. Chiou^f

^aNASA Langley Research Center, Science Directorate, Mail Stop 401A, Hampton, VA 23681 2199, USA

^bSpectroscopie de l'Atmosphère, Chimie Quantique et Photophysique CP 160/09, Université Libre de Bruxelles, 50 Avenue F.D. Roosevelt, B 1050 Brussels, Belgium

^cService d'Aéronomie/Institut Pierre-Simon Laplace, Université Pierre et Marie Curie-Paris 6, France

^dDepartment of Chemistry, University of Waterloo, Waterloo, Ont., Canada N2L 3G1

^eDepartment of Chemistry, University of York, Heslington, York YO10 5DD, UK ^fScience Systems and Applications, Inc., Hampton, VA 23666 USA

Science Systems and Applications, Inc., Hampton, VA 25000 USA

Received 6 December 2006; received in revised form 1 February 2007; accepted 2 February 2007

Abstract

We report measurements of hydrogen peroxide (H_2O_2) profiles from infrared solar occultation spectra recorded at 0.02 cm^{-1} resolution by the atmospheric chemistry experiment (ACE) during 2004 and 2005. Mixing ratios as high as 1.7 ppbv (1 ppbv = 1×10^{-9} per unit volume) were measured in the subtropical troposphere. Back trajectories, fire count statistics, and simultaneous measurements of other species from the same occultation provide evidence that the elevated H_2O_2 mixing ratios originated from a young biomass-burning plume. The ACE time series show only a few cases with elevated H_2O_2 mixing ratios likely because of the short lifetime of H_2O_2 and the limited sampling during biomass-burning time periods.

© 2007 Elsevier Ltd. All rights reserved.

Keywords: Remote sensing; Tropospheric chemistry; Pollution; Spectroscopy

1. Introduction

A variety of techniques have been used to measure hydrogen peroxide (H_2O_2) [1], an atmospheric oxidant almost solely formed from the self-reaction of HO₂ radicals and thus can serve as sensitive indicator for HO_x $(OH + HO_2)$ chemistry [2]. The H₂O₂ molecule is a HO_x reservoir with a relatively short lifetime in the

0022-4073/ $\$ - see front matter $\$ 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.jqsrt.2007.02.009

^{*}Corresponding author. Tel.: +17578642699; fax: +17578648197.

E-mail addresses: c.p.rinsland@larc.nasa.gov (C.P. Rinsland), pfcoheur@ulb.ac.be (P.F. Coheur), hherbin@ulb.ac.be (H. Herbin), cathy.clerbaux@aero.jussieu.fr (C. Clerbaux), cboone@acebox.uwaterloo.ca (C. Boone), bernath@uwaterloo.ca, pfb500@york.ac.uk (P. Bernath), l.s.chiou@larc.nasa.gov (L.S. Chiou).

¹P.F. Coheur is Research Associate with the F.N.R.S.

341

troposphere (~1 d) [2]. Emissions from surface sources can be transported to the upper troposphere by deep tropical convection [3]. Complex interactions in the troposphere affect the production of ozone (O₃) and atmospheric HO_x and NO_x (NO+NO₂) levels, though non-methane hydrocarbons cannot photolyze and participate in HO_x formation [2]. Volatile organic compounds (VOCs) include non-methane hydrocarbons (NMHC) and oxygenated NMHCs, are generally short-lived, although species such as ethane (C₂H₆) and acetone (C₃H₆O) are longer-lived and impact tropospheric chemistry on hemispheric scales [4].

Methods for measuring H_2O_2 include *in situ* sampling from an aircraft during the transport and atmospheric chemistry near the Equator-Atlantic (TRACE-A) experiment [5], far infrared stratospheric emission measurements from a balloon-borne platform (34°N, 104°W) in September 1989 [6], and space-based limb emission measurements with a high spectral resolution Fourier transform spectrometer [7]. However, weak absorption by H_2O_2 in the mid-infrared combined with its short lifetime and the complex region where it absorbs make it a challenging molecule to detect and quantify with remote sensing techniques.

Atmospheric H₂O₂ is formed primarily by self-reaction

$$\mathrm{HO}_2 + \mathrm{HO}_2 \to \mathrm{H}_2\mathrm{O}_2 + \mathrm{O}_2,\tag{1}$$

although production can be suppressed at high NO_x in the troposphere where the peroxy radical (HO₂) reacts with NO, i.e.

$$HO_2 + NO \rightarrow HO + NO_2.$$
 (2)

Loss of H₂O₂ is primarily through

$$H_2O_2 + OH \rightarrow HO_2 + H_2O, \tag{3}$$

$$H_2O_2 + hv \to 2OH. \tag{4}$$

In the troposphere gas-phase reactions are augmented by the loss of dissolved H_2O_2 mainly through reaction with dissolved SO_2 and rainout [2,7–9]. Photolytic loss is predicted to result in diurnal and seasonal variations in H_2O_2 [7].

 H_2O_2 is an important sink for OH and an important oxidant of sulfur compounds in the aqueous phase and can be deposited both wet and dry as a result of its high solubility [2]. However, photochemical pathways may lead to substantial recycling to reform H_2O_2 [2]. Despite the importance, to our knowledge only zonal mean space-based profiles of H_2O_2 have been reported for the stratosphere and troposphere [7]. Mean measured profiles from that work did not show elevated tropospheric H_2O_2 , but a three-dimensional model run for the same time period (September 2003) predicted an upper tropospheric peak of >0.33 ppbv (10⁻⁹ per unit volume) in the tropics [7].

The purpose of this investigation is to present H_2O_2 tropospheric retrievals obtained during 2004 and 2005 by the atmospheric chemistry experiment (ACE). We report several cases with elevated upper tropospheric H_2O_2 mixing ratios. We show back trajectories and fire count statistics for the measurement with the highest H_2O_2 mixing ratios. Those results support the hypothesis that the emissions originated from deep convective transport from a tropical biomass fire source regions to the upper troposphere [3]. Tropical fires are a welldocumented source of elevated trace gases emissions and notably H_2O_2 , as confirmed from measurements inside biomass-burning plume during aircraft flights near the equator as well as from laboratory biomassburning emission experiments [5].

2. Measurements

The ACE payload, also known as SCISAT-1, was successfully launched on 12 August 2003 into a 74° inclined orbit by a NASA-supplied Pegasus XL at 650 km altitude [10]. Routine ACE FTS science measurements began in February 2004. This small Canadian-designed and built satellite contains three instruments with a shared field of view, and has the primary goal of recording high-resolution atmospheric spectra taking advantage of the high precision of the solar occultation technique. The infrared instrument is a Fourier transform spectrometer (FTS) that records solar spectra below altitudes of 150 km at a spectral resolution of 0.02 cm^{-1} (maximum optical path difference of $\pm 25 \text{ cm}$) with a 1.25 mrad (10^{-3} rad) diameter

Download English Version:

https://daneshyari.com/en/article/5430864

Download Persian Version:

https://daneshyari.com/article/5430864

Daneshyari.com