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a b s t r a c t

A meticulous solid state chemistry approach has been developed for the synthesis of carbon anode from
a sustainable source. The reaction mechanism of carbon formation during pyrolysis of sustainable feed-
stock was studied in situ by employing Raman microspectroscopy. No Raman spectral changes observed
below 160 �C (thermally stable precursor) followed by color change, however above 280 �C characteristic
D and G bands of graphitic carbon are recorded. Derived carbon particles exhibited high specific surface
area with low structural ordering (active carbons) to low specific surface area with high graphitic
ordering as a function of increasing reaction temperature. Carbons synthesized at 600 �C demonstrated
enhanced reversible lithiation capacity (390 mAh g�1), high charge-discharge rate capability, and stable
cycle life. On the contrary, carbons synthesized at higher temperatures (>1200 �C) produced more
graphite-like structure yielding longer specific capacity retention with lower reversible capacity.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The increased demand for efficient energy storage devices has
intensified the development of advanced high-performance
rechargeable batteries during the last two decades. Currently
considered the state-of-the-art battery technology, lithium ion
batteries (LIBs) are the energy storage solution of choice for
portable consumer electronics, and are poised to enter new mar-
kets such as electric vehicles and grid storage [1,2]. With the rising
demand for LIBs, the search for inexpensive, more sustainable high-
capacity electrode materials has become ever more imperative.
Carbonaceous materials are still the primary anode material, with
graphitic carbons accounting for the majority of all anodes utilized
in commercial LIBs [3,4].

The specific capacity of a perfectly graphitic structure cannot
exceed 372 mAh g�1, thus limiting the energy density of graphite-
based anodes. In contrast, owing to a different storage mechanism,
a variety of disordered carbons were found to exhibit significantly

higher capacities, reaching 1000 mAh g�1 or more [5e8]. From a
cost and sustainability perspective, disordered carbons derived
from biomass are of particular interest.

To date, a wide variety of biomass sources have been investi-
gated (Table 1), including sugar, oak, walnut, almond, lignin [6];
starch [6,9,10], mangrove [11], peanut [12], coffee shells [13], sisal
[14], banana fibers [15], rice husk [16,17], straw [18], alginic acid
[19], olive [20], and cherry stones [20,21]. More recently, bamboo
chopsticks [22], and wheat straw [23] have been used. Unfortu-
nately, many of these precursors have their individual short com-
ings, including the need for acid/base treatments before pyrolysis
[12,13,15e18,20e22]; salt baths for impregnation of catalytic
metal particles [15,20]; or high temperature treatment (>1000 �C)
[11]. In addition, the resulting carbons often exhibit high capacity
fade [13,14,18,21] and/or suffer from poor cyclability [17]. The above
studies have revealed that among all the biomass-derived carbons,
starch offers the highest control over structure and properties of
the resulting carbon [9,10,24]. In recent electrochemical studies,
spherical porous carbon particles were obtained from potato starch,
achieving specific capacities of 475mAh g�1 after 20 cycles at 1C [9]
and 513 mAh g�1 after 50 cycles (C-rates were not reported) [10].

In spite of the great progress in the morphological control from
starch-derived carbons, to the best of our knowledge, wheat flour
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derived from cereal grains of the Triticum genus comprising mostly
carbohydrates (starch), protein, minerals, and minor vitamins has
not been explored as potential carbon precursor for anode mate-
rials in lithium ion batteries. This comes as a surprise given the fact
that in 2013, the world wheat production was around 713 million
tons, which is about 25% of the global cereal grain production,
ranking third compared to maize and rice [25]. Moreover, the
granule size of wheat starch ranges from 1 to 45 mm, which is
smaller and thus more favorable than that of potato starch [26]. At
the same time, amylopectin-amylose-ratio, the two main compo-
nents in starch, for wheat (72:28) is similar to that of potato starch
(79:21) [26]. These two main components will be the primary
source for the structurally tunable carbon content in the wheat
flour, making it a promising candidate as precursor material for
lithium-ion battery anode applications. Hence, in this paper, we
report on the utilization of a sustainable, inexpensive wheat flour-
derived carbons as a promising anode material in lithium ion bat-
teries. Our primary focus is the critical structure-property-relation,
with emphasis on the electrochemical performance of the resulting
carbons.

2. Experimental

2.1. Material preparation

Raw wheat flour (Aashirvaad, ITC Limited) were used as feed-
stock precursor for carbon synthesis. Approximately 3 g of wheat
flour were inserted into an alumina boat for carbonization in a tube
furnace under inert argon atmosphere, with a constant flow rate of
~10 ml min�1. The ramping rate was set at 5 �C min�1 and the
holding time was 2 h. Carbonization temperatures were set to 300,
400, 500, 600, and 700 �C. For selected samples, a secondary high-
temperature treatment (graphitization) was conducted. Two sam-
ples, carbonized at 600 �C, were further annealed for 2 h at 1200
and 1600 �C, respectively. The step towards structural ordering of
pre-synthesized carbons was conducted in an argon atmosphere
(flow rate of 100 ml min�1) using a high temperature alumina tube
furnace and a ramping rate of 3 �C min�1.

2.2. Material characterization

Thermogravimetric analysis (TGA) was performed using a TGA
Q50 from TA instruments. Carbonization of wheat flour was
measured under a constant Ar purge, whereas thermal stability
studies of the as-produced carbons were conducted in air (~
40 ml min�1). All heating and cooling rates were set to 5 �C min�1.

In situ Raman spectroscopy studies were carried out to study the
formation mechanism of carbon from the wheat-flour employing a
DXR Raman microscope (Thermo Scientific) with an Ar-ion laser
(532 nm), and a 50 � microscope objective with a 25-mm slit. All in
situ experiments were carried out in a programmable temperature

stage (Linkam THMS600) under inert Ar atmosphere with O2 levels
<1 ppm, and a constant argon purge of 10 ml min�1. Samples were
dispersed on a quartz slide and placed in the temperature stage.
Each Raman spectrum was collected for ~45 s using a laser power
density of 3.5 mW cm�2. Ex situ Raman spectra of the as produced
carbon samples were collected as well with the as described
parameters.

Particle morphology was characterized using a scanning elec-
tron microscope (SEM, FEI XL40 at 5 kV), and transmission electron
microscope (TEM, FEI Titan ETEM 80e300 at 300 kV). Surface area
and pore size were analyzed using aMicromeritics Tristar 3000, the
samples were outgas at 300 �C for 12 h.

Powder X-ray diffraction (XRD) was performed using a Rigaku
(Cu source), at an acceleration voltage of 40 kV and a current of
44 mA. Data were collected in the range 2q ¼ 10e80� using a step
size of 5� min�1. The Scherrer Equation (1) was used to determine
the dimension of the crystallite thickness (Lc), and La the cluster
diameter or the in-plane coherent length.

L ¼ kl

ðbcosqÞ (1)

where k is the geometrical factor, l is the X-ray sourcewavelength, q
is the scattering angle in radians, and b is the full width at half
maximum (FWHM) for the peaks used in radians. The (002) peak
center is used to calculate Lc, and k equals 0.9. For the dimensions of
the cluster diameter (La), the peak center of (100) data is used and k

equals 1.84 [27]. Transmission electron microscopy (TEM, FEI Titan
ETEM 80e300 at 300 kV) is used for the structuring understanding.

2.3. Electrochemical studies

Electrode slurries were prepared by mixing 80 wt.% wheat-
derived carbon with 10 wt.% polyvinylidene fluoride (MTI) binder
and 10 wt.% of conductive carbon (Timcal SuperP). The powder
mixture was then dispersed in N-methyl-2-pyrolidone (MTI) and
casted on a copper foil using an automated doctor blade applicator.
The electrode was subsequently dried in a vacuum oven (80 �C for
~8 h). Coin cells were assembled in half-cell configuration using a
lithium metal electrode (MTI) and a standard electrolyte (MTI)
containing 1 M LiPF6 in EC: DMC: DEC (1:1:1) with Celgard 2500
separator. Cell assembly was conducted in an Ar-filled glove box
(H2O and O2 less than 1 ppm). Galvanostatic charge-discharge cy-
cles were conducted on a Maccor 4000 series with the cycling
voltage range of 0e3.0 V at various C-rates, C-rates were normal-
ized to the electrode mass, assuming theoretical capacity of
graphite, 372 mAh g�1. Electrochemical impedance spectroscopy
(EIS) were conducted on cells at a charged state with an oscillation
of 5 mV amplitude over the frequency of 100 kHz to 0.01 Hz.

Table 1
Literature survey of the various biomass derived carbons, their synthesis methods and their respective half - cells reversible capacities with respect to lithium at similar C-rates
(0.1C), otherwise noted.

Precursor Synthesis Crev (mAh g�1)

Potato Starch Granules [9] Baking (200e300 �C) þ Pyrolysis (1000 �C) 540
Mangrove charcoal [11] Pyrolysis (1000 �C) 463
Sisal Fibers [14] Pyrolysis (900 �C) þ Hydrothermal activated (140 �C) 250
Rice Husk [16] Autoclave (230 �C) þ Pyrolysis (900 �C) þ SiO2 etching NH4HF2 403 @0.2C
Alginic Acid [19] HCl bath þ Pyrolysis (1500 �C) 255 @0.7C
Cherry stones [20] H2SO4 bath þ ZnCl2 impregnation þ Pyrolysis (500 �C) 267 @0.2C
Cherry stones [21] KOH bath þ Pyrolysis (500 �C) 348
Bamboo chopsticks [22] KOH bath þ Various heating process and washing process (150 �C þ 60 �C) þ Pyrolysis (800 �C) þ HCl Bath 355 @0.37C
Wheat Straw [23] HCl Bath þ KOH Bath þ Pyrolysis at 700 �C 1470
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