FISEVIER

Contents lists available at ScienceDirect

Carbon

journal homepage: www.elsevier.com/locate/carbon

CO_2 - Reinforced nanoporous carbon potential energy field during CO_2/CH_4 mixture adsorption. A comprehensive volumetric, *in-situ* IR, and thermodynamic insight

Marek Wiśniewski ^{a, b}, Stanisław Koter ^c, Artur P. Terzyk ^{a, *}, Jerzy Włoch ^d, Piotr Kowalczyk ^e

- ^a Faculty of Chemistry, Physicochemistry of Carbon Materials Research Group, Nicolaus Copernicus University in Toruń, Gagarin Street 7, 87-100, Toruń, Poland
- ^b INVEST-TECH R&D Center, Plaska Street 32-34, 87-100, Toruń, Poland
- ^c Faculty of Chemistry, Department of Physical Chemistry, Nicolaus Copernicus University in Toruń, Gagarin Street 7, 87-100, Toruń, Poland
- d Faculty of Chemistry, Synthesis and Modification of Carbon Materials Research Group, Nicolaus Copernicus University in Toruń, Gagarin Street 7, 87-100, Toruń. Poland
- ^e School of Engineering and Information Technology, Murdoch University, Murdoch, 6150, WA, Australia

ARTICLE INFO

Article history: Received 17 May 2017 Received in revised form 20 June 2017 Accepted 21 June 2017 Available online 22 June 2017

Keywords: Adsorption Activated carbon CO₂/CH₄ mixture FTIR Thermodynamics

ABSTRACT

CO₂/CH₄ mixture adsorption is very important in different fields like, for example, a biogas purification. Using a comprehensive experimental approach based on volumetric and *in-situ* FTIR measurements the new results of CO₂/CH₄ mixture separation on a carbon film are reported. The application of this experimental approach makes it possible to elaborate the effect of enhanced CH₄ adsorption at low CO₂ concentrations in the adsorbed phase. The presence of this effect is proved experimentally for the first time. This effect is responsible for the deviation of Ideal Adsorption Solution model from the experimental data. To discuss separation mechanism the activity coefficients at constant spreading pressure values are calculated. At low spreading pressure, CO₂ activity coefficient is strongly disturbed by the presence of CH₄ molecules in the surface mixture. In contrast, the CH₄ activity coefficients are remarkably influenced by adsorbed CO₂ only at higher CO₂ surface concentrations. The obtained activity coefficients are successfully described by a new modification of the Redlich-Kister equation. This modification takes into account the interaction between binary mixture components and an adsorbent. Finally we show that the studied carbon possesses very good CO₂/CH₄ mixture separation properties, comparable to those reported for other adsorbents.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

CO₂/CH₄ mixture has been considered as very important because it is a major biogas component [1] produced by bacteria from anaerobic fermentation of a biodegradable waste. A biogas is currently one of the most important renewable energy sources. However, before a biogas is used, CO₂ should be removed [2] since this component lowers the gas heating value. Among more or less advanced procedures of a biogas purification, adsorption-based methods (for example the Pressure Swing Adsorption [3]) play an important role, and activated carbons (and carbonaceous materials)

are still considered as the most promising adsorbents [4]. This is caused by energy-efficiency and cost effectiveness of the adsorption-based methods and generally, by a relatively low cost of activated carbons. However, the major difficulty with activated carbons application is relatively low selectivity to CO₂ [5], thus the experimental as well as simulation studies of CO₂/CH₄ mixture have been reported, to optimize properties of the "best possible" carbon material. Among carbon materials, studied in the molecular simulations of CO₂/CH₄ mixture adsorption, one can mention a model carbon slit-like micropores, triply periodic carbon minimal surfaces, and Virtual Porous Carbons (VPC) [6].

Mentioned above theoretical studies are important not only in the field of a biogas purification, but simulations have shed a new light on the mechanism of the so-called "enhanced coal bed

Corresponding author.

E-mail address: aterzyk@chem.umk.pl (A.P. Terzyk).

methane recovery process". This process is important in the reduction of anthropogenic CO₂. Considering CO₂/CH₄ mixture adsorption, a two-stage mechanism of the process has been reported, and the influence of pore sizes and surface oxidation on this mechanism has been studied theoretically. It is suggested that in very narrow micropores and at low mixture pressures, adsorbed CO₂ molecules can enlarge the potential field in pores, and drag some methane molecules from the gas phase. In this way, CH₄ adsorption (via dispersive interactions) can be increased in micropores [7]. This effect can be caused by the permanent quadrupole moment of CO₂ molecule, and in general, by larger tendency of CO₂ to intermolecular interactions. Thus, adsorbed CO₂ molecules can induce permanent electric moments in adsorbed CH₄ molecules. However, at larger CO₂ pore concentrations, the dominant CO₂-CO₂ interactions can lead to the displacement of CH₄ molecules from small pores. It is interesting that similar effect was reported for some Metal Organic Framework (MOF) materials. It was shown that water preadsorption should increase adsorption of CO_2 [8]. Summing up, molecular simulations suggest the occurrence of this enhancement effect at low pressures, however, (up to our knowledge) the experimental data confirming this effect do not exist.

Using adsorption measurements reinforced by the *in-situ* Fourier Transform Infra Red (FTIR) spectroscopy results, we are able to get deeper insight into the mechanism of CO₂/CH₄ mixture adsorption and separation. Special attention has been paid to the enhancement of CH₄ storage due to preadsorbed CO₂ (as it is described above). By the application of adsorption thermodynamics we discuss the mechanism of adsorption and separation in narrow carbon micropores. Unexpected plots of CO₂ activity coefficients are reported. It is shown that in narrow carbon nanopores the interaction between the adsorbent, CO₂ and CH₄ is more complicated as it has been proposed till now. Finally we show that studied nanoporous carbon is a potential candidate for CO₂/CH₄ mixture separation, and that the IAS based separation coefficients should be treated with a care.

2. Experimental methods

A carbon film used in this study was prepared from a pure cellulose. The charring experiments were described in detail elsewhere [9-11]. The cellulose film heated at 573 K in air for 1 h was outgassed at 873 K for 1 h under the dynamic vacuum (1.3 10^{-6} bar) to remove surface oxygen. The full structural characteristics of the tested adsorbent have been described previously [12]. Briefly, based on the results of low-temperature Ar and N₂ adsorption, the tested carbon film can be regarded as a strictly microporous solid with the BET surface area equal to 478.3 m²/g (carbon labeled C_{873} in [12]). It is important that the pore size distribution (calculated using the Density Functional Theory method) shows mainly the presence of very narrow micropores with the diameter equal to 0.62 nm (and the volume equal to 0.19 cm³/g). Our previous simulation studies showed [6] that the most effective carbon for CO₂/CH₄ mixture separation should possess pores with diameters smaller than c.a. 1 nm, thus the studied carbon is a perfect candidate for this purpose.

The *in-situ* FTIR studies were carried out in a vacuum cell described previously [9,10,13]. The application of this technique makes it possible to determine in what extent physical or chemical adsorption occurs. Moreover, we can easily determine the absence of any surface oxygen compounds formed by chemisorption. We can also, based on the spectra of carbon, check in what extent a carbon material changes its structure during adsorption and in what extent a sample is affected by possible impurities.

The construction of the *in-situ* FTIR cell enables the thermal treatment of the carbon film up to 1200 K in any controlled

atmosphere or in a vacuum. The CO_2 and CH_4 adsorption was performed under isothermal conditions ($T=298~\rm K$). For each run (see Table 1) after adsorption of CH_4 , the CO_2 partial pressure was changed by addition of the next portion of the gas. The spectra for the samples were recorded using the Mattson Genesis II FTIR spectrophotometer. Spectral changes accompanying adsorption of gases were used, after calibration, to describe quantitatively observed phenomena. The respective gas phase was a background for each carbon film spectrum, enabling the observation of spectral changes of a sample surface, without perturbation from the gas phase. A period of at least 5 h (monitoring continuously) at each gas composition was held in order to be sure that the equilibrium was achieved.

Additionally, the adsorption isotherms of separate gases were measured volumetrically ($T=298\ K$).

All experiments were repeated at least three times and qualitatively similar results were obtained. The presented results are representative for three tested series of experiments.

Fig. 1 shows the FTIR spectra obtained after exposing the studied carbon sample to CH₄/CO₂ gas mixture at increasing partial CO₂ pressure. To the best of our knowledge there is a lack of *in-situ* FTIR studies using carbonaceous materials as molecular sieves in the CO₂/CH₄ separation process. What is important, adsorption of the gas mixture on carbon surface does not cause the appearance of any oxygen-containing surface compounds, particularly carbonate or carbonyl groups. It means that adsorption of both compounds is physical and fully reversible.

At 298 K the increase in the CO₂ pressure causes first the increase, and then the decrease in the intensities of the bands observed for physically adsorbed CH₄ (at 3016 cm⁻¹). The occurrence of this maximum during physical adsorption of CH₄ stays in an excellent agreement with the results of previous theoretical reports [7], and is the major subject of this work.

3. Results and discussion

The experimental adsorption data for pure gases are shown in Fig. 2. As in the case of "ordinary" microporous activated carbons, the adsorption of CO_2 is larger than the adsorption of CH_4 (see for example [15–17]). This is mainly caused by larger potential energy of $C-CO_2$ interactions in very narrow micropores [7]. This also causes that the equilibrium CO_2/CH_4 selectivity at "zero" coverage is enhanced in very narrow micropores.

As it has been often proposed [18], adsorption data were fitted using the Dubinin and Astakhov (DA) [19] adsorption isotherm equation (Fig. 2). Both studied gases are supercritical at the measurement temperature, therefore the "pseudo saturated vapour pressure" should be calculated. To do this the method proposed by Amankwah and Schwarz (AS) [20] was applied. As it was shown recently [18] application of the AS approach leads to the best fit of the DA model to simulated CO₂ and CH₄ adsorption isotherms [18]. As it is seen from Fig. 2 the DA model fits our experimental data very well (Fig. 2). The determination coefficient (showing the fit of

Table 1
The parameters of experimental runs; p is the sum of pCH_4 and pCO_2 at the end of experiment, yCO_2 is the equilibrium mole fraction of CO_2 in the gas phase.

Run number	pCH ₄ [bar]	p [bar]	yCO ₂
1	0.065	0.20	0.68
2	0.13	0.40	0.67
3	0.20	0.47	0.58
4	0.26	0.53	0.52
5	0.34	0.67	0.49
6	0.41	0.78	0.48

Download English Version:

https://daneshyari.com/en/article/5431925

Download Persian Version:

https://daneshyari.com/article/5431925

<u>Daneshyari.com</u>