Accepted Manuscript

Electrospinning of Ag Nanowires/polyvinyl alcohol hybrid nanofibers for their antibacterial properties

Zhijie Zhang, Yunping Wu, Zhihua Wang, Xu Zhang, Yanbao Zhao, Lei Sun

PII: S0928-4931(16)32843-0

DOI: doi: 10.1016/j.msec.2017.04.138

Reference: MSC 7961

To appear in: Materials Science & Engineering C

Received date: 28 December 2016

Revised date: 7 April 2017

Please cite this article as: Zhijie Zhang, Yunping Wu, Zhihua Wang, Xu Zhang, Yanbao Zhao, Lei Sun , Electrospinning of Ag Nanowires/polyvinyl alcohol hybrid nanofibers for their antibacterial properties. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Msc(2017), doi: 10.1016/j.msec.2017.04.138

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Electrospinning of Ag Nanowires/polyvinyl alcohol hybrid nanofibers for their antibacterial properties

Zhijie Zhang, ¹ Yunping Wu, ¹ Zhihua Wang, ^{2,*} Xu Zhang, ¹ Yanbao Zhao ¹ and Lei Sun ^{1,*}

ABSTRACT In order to developing a sort of flexible fibrous mats with outstanding and durable antibacterial activates, silver nanowires incorporated into polyvinyl alcohol (PVA) nanofibers were fabricated by electrospun method. Uniform Ag nanowires (NWs) were synthesized through a template-free method of solvothermal combined with polyol process, and then, they were dispersed in PVA solution. At last, Ag NWs embedded in PVA (Ag NWs/PVA) hybrid nanofibrous films were gained by electrospun of the mixed solution. The antibacterial activity of Ag NWs/PVA nanofibers against Escherichia coli (*E. coli*) and Staphylococcus aureus (*S. aureus*) was investigated by the methods of absorption and turbidity. Ag NWs with a mean diameter of 86 nm were demonstrated to be uniformly incorporated into PVA nanofibers, forming a core-sheath nanocable structure. The as-prepared flexible and free-standing Ag NWs/PVA nanofibrous films show outstanding antimicrobial activities against both *E. coli* and *S. aureus*. It's found that both matrix polymer of PVA and enrichment of active {111} facets present in Ag NWs are favorable for the antibacterial performance.

KEYWORDS Ag nanowires, electrospinning, nanofibers, PVA, antibacterial properties

Introduction

In recent years, the development of resistant bacteria to ordinary antibacterial agents has become a severe threat to public health. So, the research of new antibacterial agents has drawn intensive attention in the field [1]. Nanomaterials have attracted the widespread attention, since its unique physical and chemical performance. Among of them, metal and metal oxide nanomaterials have been already applied in the fields of biological medicine, photoelectron, photocatalysis, etc [2, 3]. In particular, the research of hybrid

National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Jinming Campus, Kaifeng 475004, China

² College of Chemistry and Chemical Engineering, Henan University, Jinming Campus, Kaifeng 475004, China

Download English Version:

https://daneshyari.com/en/article/5434465

Download Persian Version:

 $\underline{https://daneshyari.com/article/5434465}$

Daneshyari.com