Accepted Manuscript

Facile in situ formation of hybrid gels for direct-forming tissue engineering

Jun-Sung Oh, Jeong-Soon Park, Cheol-Min Han, Eun-Jung Lee

PII: S0928-4931(17)30055-3

DOI: doi: 10.1016/j.msec.2017.04.111

Reference: MSC 7934

To appear in: Materials Science & Engineering C

Received date: 5 January 2017 Revised date: 18 April 2017 Accepted date: 19 April 2017

Please cite this article as: Jun-Sung Oh, Jeong-Soon Park, Cheol-Min Han, Eun-Jung Lee , Facile in situ formation of hybrid gels for direct-forming tissue engineering. The address for the corresponding author was captured as affiliation for all authors. Please check if appropriate. Msc(2017), doi: 10.1016/j.msec.2017.04.111

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Facile in situ formation of hybrid gels for direct-forming tissue engineering

Jun-Sung Oh^a, Jeong-Soon Park^a, Cheol-Min Han^{b*}, Eun-Jung Lee^{a*}

^a Department of Nano-biomedical Science & BK21 PLUS NBM Global Research
Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Korea
^b Division of Orthodontics, College of Dentistry, Ohio State University, Columbus,

Ohio, United States of America

ABSTRACT

Development of bioactive hydrogel as extracellular matrix (ECM) is a very important field for cell-based therapy. In this study, we provided a facile method based on sol-gel process for fabricating bioactive composite hydrogels. The composite hydrogels were composed of solgel derived silica and biopolymer. Different amounts of silica solution (20-80 wt %) were mixed with 2 % polymer sol (alginate) followed by aging and gelation to form a network so that the alginate-silica hybrid mixture could form a gel without any additional crosslinking process. The self-gelation time of the hybrid hydrogel measured by rheometer was reduced as the content of silica was increased. Such hydrogels had highly porous and interconnected structures. Their strut showed uniform surface texture. Under physiological conditions (PBS, 37 °C), these hybrid hydrogels exhibited long-term stability compared to alginate hydrogels as control. The mechanical properties of these hydrogels such as compressive strength, compressive modulus, and work of fracture were significantly enhanced by hybridization with sol-gel derived silica. *In vitro* cell tests revealed that these hybrid hydrogels exhibited

Download English Version:

https://daneshyari.com/en/article/5434475

Download Persian Version:

https://daneshyari.com/article/5434475

<u>Daneshyari.com</u>