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Silicon substituted calcium phosphates have been widely studied over the last ten years due to their enhanced
osteogenic properties. Notwithstanding, the role of silicon on α-TCP reactivity is not clear yet. Therefore, the
aim of this workwas to evaluate the reactivity and the properties of Si-α-TCP in comparison toα-TCP. Precursor
powders have similar properties regarding purity, particle size distribution and specific surface area, which
allowed a better comparison of the Si effects on their reactivity and cements properties. Both Si-α-TCP and α-
TCP hydrolyzed to a calcium-deficient hydroxyapatite when mixed with water but their conversion rates were
different. Si-α-TCP exhibited a slower setting rate thanα-TCP, i.e. kSSA for Si-TCP (0.021 g·m−2·h−1) was almost
four times lower than for α-TCP (0.072 g·m−2·h−1). On the other hand, the compressive strength of the CPC
resulting from fully reacted Si-α-TCP was significantly higher (12.80 ± 0.38 MPa) than that of α-TCP
(11.44 ± 0.54 MPa), due to the smaller size of the entangled precipitated apatite crystals.

© 2017 Published by Elsevier B.V.
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1. Introduction

Calcium phosphate cements (CPCs) were discovered in the 1980's
by Brown, Chown and LeGeros [1,2]. These materials are still actively
studied nowadays since CPCs present attractive characteristics such as
bioactivity, biocompatibility, osteoconductivity and resorbability [3,4].
Furthermore, CPCs consist on a moldable paste that can be injected
into the bone defect using minimally invasive procedures [5–7], with
in vivo self-setting after a few minutes.

The twomost common types of CPCs have been called upon the end-
product formed: apatite cement (precipitates at pH N 4.2) and brushite
cement (precipitates at pH b 4.2). One of the most common main pre-
cursors of apatite cements is α-tricalcium phosphate (α-TCP) [8],
which dissolves and precipitates into calcium deficient hydroxyapatite
when mixed with water via a cementitious reaction.

Several studies have shown that it is not so easy to obtain a highly
pure α-TCP [8–11]. The reason for that has been ascribed to the pres-
ence of magnesium impurities in most commercial reagents, a well-
established stabilizer of β-TCP, a lower temperature isomorph of TCP
[10,12–14]. When Mg2+ is present at ≥4.1 at% the temperature of

β → α phase transformation can increase from ~1125 °C to 1485 °C
[10,12,15–17]. The temperature of α-TCP synthesis can be reduced by
using Mg-free reagents [8,11,18,19]. Cardoso et al. [11] and Motisuke
et al. [18,19] succeeded in obtaining α-TCP using impurity-free reagent
at a temperatures of 1165 °C and 1300 °C, respectively. On the other
hand, Si has been shown to stabilize the α phase down to low temper-
atures [20,21]. Therefore, another path to reduce the temperature of α-
TCP synthesis is by dopingα-TCPwith silicon (Si-α-TCP). The tempera-
tures for synthesizing Si-α-TCP may vary from 700 °C to 1250°
depending on the contents of Mg and/or other impurities [9,22–26].

Si-α-TCP can be obtained by treating at high temperatures a precip-
itate obtained after mixing calcium nitrate and ammonium phosphate
solution at a proper ratio in the presence of ammonia and either colloi-
dal silica or organic silicon compounds [23,27]. An alternative route con-
sists in performing a solid state reaction of mixtures of 1) CaCO3,
CaHPO4 or (NH4)2PO4, and Ca2SiO4 or CaSiO3 [9,28], or 2) β-Ca3(PO4)2
and CaSiO3 [29], or 3) HA and SiO2 [26].

When calcium phosphate cements are prepared from a Si-α-TCP
powder some cement properties are altered as compared to its pure
counterpart. One example is powder solubility. According to Wei et al.
[30], Si increasesα-TCP solubility. Mestres et al. [26] verified a faster hy-
drolysis kinetics, the cement with Si present a similar resistance when
compared with the pure, a decrease in cell proliferation and an in-
creased in alkaline phosphatase (ALP) activity, which corresponds to
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an enhance of cell differentiation. On the other hand, Camiré et al. [28]
observed a decrease on powder reactivity and cement mechanical
strength and; an increased osteoclastic and osteoblastic activity.

Additionally to the stabilization of α-TCP phase, silicon has been
shown to be beneficial for some biological properties such as bone cal-
cification [32]. Si is essential for bone regeneration and therefore can
stimulate certain cell activities such as proliferation and differentiation
of osteoblasts [26]. Moreover, the bioactivity of a material can be im-
proved by doping it with Si [33–35].

The role of silicon on the reactivity of α-TCP towards the formation
of CPCs is not clear yet [19,26,28]. Thus, the aim of this work was:
1) to verify how silicon may influence on the setting reaction of α-TCP
bone cement; and 2) to determine how the different reactivity affects
the physico-chemical properties of CPCs. The novelty of this work relies
on the use of Mg-free precursors for preparing α-TCP and Si-α-TCP [9]
and on the attempt to employ feasible and large scale procedures topro-
mote the production of more accessible bone cements.

2. Materials and methods

2.1. Preparation of TCP powders and bone cement

α-TCP and Si-α-TCP were synthesized by a solid state reaction from
the appropriatemixture of labmadeMg-free CaCO3 (Mgwt% b 0.0180),
CaHPO4 (Mg wt% b 0.0001) and CaSiO3 (Mgwt% b 0.0001) as described
elsewhere [9]. Briefly, CaCO3 and CaHPO4weremixed to prepareα-TCP,
and 2 wt% of CaSiO3 was included in the mixture to prepare Si-TCP. The
powders were calcined for 6 h at 1300 °C for α-TCP and 1200 °C for Si-
TCPwith a heating rate of 10 °C·min−1. Afterwards, samples were let to
cool down inside the furnace without quenching. Finally, the powders
were milled in a horizontal ball mill for 48 h using an alumina gridding
media of Ø15 mm and ball to powder ratio of 20:1 w/w.

The mixing liquid used in cements was an aqueous solution of
Na2HPO4 (2.5 wt%) and C6H8O7 (citric acid) (1.5 wt%) in distilled
water. Citric acid was employed as a liquid reducer agent and to pro-
mote a more homogeneous setting reaction due to its dispersant effect
[36], and Na2HPO4 was added to accelerate the setting reaction due to
the common-ion effect [37]. Cements were prepared by mixing the

powder and liquid in a ratio (L/P) of 0.60 mL·g−1. The paste was intro-
duced in Teflon molds (6 mm diameter × 12 mm height), and samples
were immersed in 0.9 wt% of NaCl solution at 37 °C for setting.

2.2. Characterization of physico-chemical properties

X-ray Fluorescence (XRF, Philips, MagiX Super Q Version 3.0) was
used to evaluate the elemental composition (major and minor compo-
nents), as well as Ca/P or Ca/(P + Si) ratios of the two TCP powders.
X-ray Diffraction (XRD, Bruker D8 Advance, CuKα, Ni filter, 20 to 40°
(2θ), 0.02° s−1, 40 kV and 40 mA) was also used for qualitative and
quantitative determination of the crystalline phases existing in the
starting powders and set cements. JCPDS files used for phase identifica-
tionwere #09-0348 forα-TCP and #09-0169 for β-TCP. For quantitative
determination of β-TCP on the starting powders the internal standard
methodwas employed, in which a diffraction line from the phase quan-
tified (β-TCP) was compared to a diffraction line from a standard
(Al2O3) mixed with the sample in known proportions [38].

The density of the TCP powders was measured by helium
picnometry (Micromeritics, AccuPyc 1330), the specific surface area
(SSA) was measured by nitrogen adsorption (Micromeritics, ASAP
2020) according to Brunauer-Emmett-Teller theory and the
granulometry of the powder was determined by laser diffraction parti-
cle size analysis (Coulter Counter LS 13 320).

The hardening kinetics was monitored by measuring the compres-
sive strength (MTS, Test Star II) of wet samples after different time in-
tervals (2, 4, 8, 24, 72, 120, 168, 360 h), at least 10 cylindrical
specimens were tested per condition. After that, samples were im-
mersed in acetone for 2 h to stop the setting reaction, and then dried
at 100 °C overnight. The crystalline phase composition at each time
point was assessed by XRD, (including a JCPDS file #46-0905 for
CDHA). The conversion rate was determined by XRD following the pro-
cedure proposed byGinebra et al. [39,40] and Rigo et al. [41]. It is known
that themass fraction of a crystallinematerial present in a given sample
is proportional to their XRD lines intensities. To evaluate the evolution
of the setting reaction of the cements studied, the rate ofα-TCP conver-
sion (αt) was evaluated based on the evolution of its mass fraction with
time as stated on Eq. (1).

αt ¼ w0−w∞ð Þ− wt−w∞ð Þ
w0−w∞ð Þ ð1Þ

where w0 is α-TCP mass fraction at initial time (t = 0 h), w∞ is α-TCP
mass fraction after the 168 h of setting reaction and wt is α-TCP mass
fraction at a determined time, t. At each time, α-TCP mass fraction
was determined after its XRD lines (1 3 2), (1 1 3) and (1 0 7) integrated
intensities (Eq. (2)) and an average value was established.

Iα
Iα;0

¼ wαMα

wα;0 Mα−MCDHAð Þ wα þwβ
� �þMCDHA

� � ð2Þ

where Iα is the integrated intensity of α-TCP (1 3 2), (1 1 3) or
(1 0 7) XRD lines at a determined time, t; Iα,0 is the integrated intensity
ofα-TCP (1 3 2), (1 1 3) or (1 0 7) XRD lines at initial time (t= 0 h);Mα

is the is themass absorption ofα-TCP, 86.43 [40];MCDHA is themass ab-
sorption of CDHA, 84.97 [40]; wß is the mass fraction of β-TCP during
setting reaction; wα is the mass fraction of α-TCP at a determined
time, t and; wα,0 is the mass fraction of α-TCP at initial time (t = 0 h).

Fig. 1. XRD patterns of TCP powders. Legend: α = α-TCP, β = β-TCP.

Table 1
XRF results. Ca/P and Ca/P + Si ratios. Values are in at%.

Sample Ca P Si Ca/P or Ca/(P + Si)

Si-α-TCP 22.89 14.60 1.04 1.46
α-TCP 23.08 15.38 – 1.50

Table 2
Specific surface area (SSA), mean particle size (dMean) and particle size distribution
(10% b d b 90%).

Sample SSA (m2·g−1) dMean (μm) 10% b d b 90% (μm)

α-TCP 0.5322 ± 0.0042 8.317 0.596 b d b 17.25
Si-α-TCP 0.6202 ± 0.0062 6.710 0.785 b d b 14.67
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