MSC-07212; No of Pages 8

ARTICLE IN PRE

Materials Science and Engineering C xxx (2016) xxx-xxx

Contents lists available at ScienceDirect

Materials Science and Engineering C

journal homepage: www.elsevier.com/locate/msec

Solid lipid nanoparticles for the delivery of 1,3,5-triaza-7-phosphaadamantane (PTA) platinum (II) carboxylates

Maddalena Sguizzato ^a, Rita Cortesi ^{a,*}, Eleonora Gallerani ^a, Markus Drechsler ^b, Lorenza Marvelli ^c, Paolo Mariani ^d, Federica Carducci ^d, Riccardo Gavioli ^a, Elisabetta Esposito ^a, Paola Bergamini ^c

- ^a Department of Life Sciences & Biotechnology, University of Ferrara, Ferrara, Italy
- ^b Macromolecular Chemistry II, University of Bayreuth, Germany
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara. Italy
- ^d Department of Life and Environmental Sciences, Università Politecnica delle Marche, Ancona, Italy

ARTICLE INFO

Article history: Received 3 August 2016 Received in revised form 12 October 2016 Accepted 5 December 2016 Available online xxxx

Keywords: PTA Platinum SLN Cancer Delivery system Protonolysis

ABSTRACT

The use of solid lipid nanoparticles (SLN) is a promising route for the delivery of platinum complexes aimed to anticancer activity.

This paper describes the production and characterization of SLN suitable for the loading of Pt complexes containing the biocompatible phosphine 1,3,5-triaza-7-phosphaadamantane (PTA) as neutral ligand.

After a screening of several lipidic phases, stearic acid-based SLN were identified as the most appropriate for the purpose. They were produced by emulsion-dilution method and then characterized in terms of dimension, polydispersity, time stability, pH balance and morphological aspect.

Stearic acid SLN are designed as a system able to coordinate to platinum, acting as anionic carboxylic ligands, replacing the base carbonate of the Pt synthon [PtCO₃(DMSO)₂], where also DMSO can subsequently be substituted by phosphinic ligands, namely PTA. SLN functionalised with Pt-PTA were produced and characterized by this syn-

The toxicity of plain SLN and the antiproliferative effect of SLN functionalised with Pt-PTA were evaluated on two human cancer cell lines K562 and A2780. The results indicate that SLN can be exploited as a delivery system for Pt complexes with potential anticancer activity.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Since the advent of cisplatin [1], platinum complexes have attracted increasing interest as anticancer chemotherapics. Presently, platinumbased anticancer drugs are widely used in medical oncology for the management of tumors of the ovary, testes, head and neck and other cancers [2-4]. Unfortunately, beside a very high rate of success, they present heavy side effects and tend to acquire resistance [5-9]. An extensive search has therefore been developed for platinum-based drugs with improved pharmacological properties as compared to the cisplatin parent compound. It has been progressively clarified that the distribution and the concentration of platinum-based drugs in different body districts are influenced by some physicochemical properties of the ligands such as polarity, hydrophilicity and steric requirements. Thus, many variations of the ligands have been proposed over nearly 40 years, including the possibility of introducing phosphines as neutral drugs of consolidate clinic use. A very large number of phosphinic platinum complexes have been

ligands, instead of ammonia or amines [10-11], the carrier ligands of Pt

prepared and exploited for fundamental mechanistic studies because of the great affinity of Pt for phosphorus (hard-soft theory), the stability of Pt-P bonds and the possibility of using ³¹P NMR as a tool of investigation even in a multi-components environment like biological fluids [12-15]. Nevertheless the choice of phosphine ligands for pharmaceutical purposes is limited on one side by the hydrophobicity of common aromatic phosphines such as PPh₃ or 1,2-bis(diphenylphosphino)ethane, on the other by the instability to oxidation of aliphatic phosphines (e.g. PMe₃), which require to be handled under controlled conditions.

For these reasons, the search of a strategy aimed to the extension of the pharmaceutical application to Pt phosphine complexes has attracted great interest since many years. The first approach was the development of hydrophilic, oxidatively stable and biocompatible phosphines. It is now clear that these three requirements were fulfilled only by 1,3,5-triaza-7-phosphaadamantane (PTA) [16-17]. More recently, nanoscale formulations have been proposed and exploited as carriers for platinum-based anticancer chemotherapeutics [18-19].

http://dx.doi.org/10.1016/j.msec.2016.12.020 0928-4931/© 2016 Elsevier B.V. All rights reserved.

^{*} Corresponding author at: Department of Life Sciences & Biotechnology, Drug and Health Products Section, via Fossato di Mortara 19, 44121 Ferrara, Italy. E-mail address: crt@unife.it (R. Cortesi).

Nanoparticulate-drug delivery systems are able to improve the permeability, retention effect, safety, pharmacokinetics properties and bioavailability of the therapeutic substances in the treatment of tumor cells [19]. The delivery formulations, namely liposomes, micelles or lipid particles, often exploit differences between normal tissues and tumors increasing the selectivity of the drug towards its target [20]. Furthermore, the use of these nanoscale carriers prevents their extravasation in normal tissues and removal by renal clearance [21].

The incorporation of the drug into the carrier can involve different methods, such as encapsulation, conjugation or metal complexation.

As an example of a system designed for metal complexation, in a previous paper we described the preparation and inclusion in SLN of N-alkyl PTA lipophilic derivatives, whose P-donor carrier ligands can coordinate Pt(II) [12–23].

In the present study, to functionalise the solid lipid nanoparticles (SLN) with Pt-PTA groups, a new complexation route based on the use of solid lipid nanoparticles (SLN) of stearic acid is proposed. The carboxylic groups on the surface of the nanoparticles can be deprotonated and then coordinated to platinum-PTA complexes as carboxylates. Considering the evolution of Pt-based drugs, Pt carboxylates, such as carboplatin or oxaliplatin (second generation), represented an improvement in terms of therapeutic index as compared to cisplatin (first generation) [3–4]. This observation allows one to expect that the system here proposed performs efficiently in the cancer therapy.

Indeed, this new way of inclusion in SLN should favour both the delivery and the activity of the Pt-PTA moiety.

2. Materials and methods

2.1. Materials

The phosphine PTA was prepared as described in the literature [24–25]. Polyethylene glycol sorbitan monolaurate (Polyoxyethylenesorbitan monolaurate, Polysorbate 20, Tween 20), Polyethylene glycol sorbitan monooleate (Polyoxyethylenesorbitan monooleate, Polysorbate 80, Tween 80), stearic acid and all other materials and solvents were purchased from Sigma-Aldrich S.r.l. (Milan, Italy).

2.2. SLN preparation

SLN were produced following the emulsion-dilution technique. In particular, as depicted in Fig. 1, stearic acid (2% w/w) and a surfactant

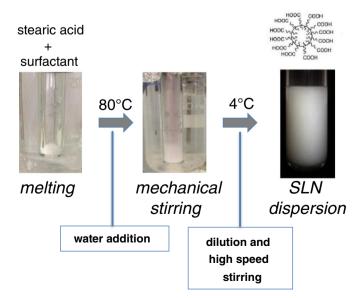


Fig. 1. Schematic representation of the procedure followed for the preparation of ST20 and ST80.

(3.34% w/w), namely Polysorbate 20 (Tween® 20, T20) or Polysorbate 80 (Tween® 80, T80), were melted at 80 °C and bidistilled water (21.26% w/w) was heated at the same temperature. Bidistilled water was dispersed in the fused lipid phase in order to form O/W hot emulsion under mechanical agitation at 3000 rpm for 5 min. The hot emulsion was diluted with cold bidistilled water (73.4% w/w) under high-speed homogenizer (Ultra Turrax, Ika-Werk, Sardo, Italy) at 11,000 rpm for 10 min. The dilution of the system leaded to precipitation of the lipid phase forming fine particles that were stored at room temperature [26–27].

2.3. Syntheses

Recently the synthesis of [PtCO₃(DMSO)₂] from cis-[PtCl₂(DMSO)₂] in water with a high yield and its full characterization was reported [28]. In our experience, the observation of the methyl group of coordinated DMSO (singlet at 3.27 ppm with satellites $J_{\rm HPt}=20.5$ Hz) as the only signal in $^1{\rm H}$ NMR in D₂O can be trusted as a purity evidence in every new preparation.

2.4. SLN functionalization with Pt(PTA)₂ group

Solid [PtCO₃(DMSO)₂] (8.72 mg, 2.12×10^{-5} mol) was added to a suspension of SLN prepared as above described (1 mL, estimated amount of —COOH functions 8.49×10^{-5} mol, 4 eq), and vigorously stirred at room temperature for 15 min. A solution of PTA (6.66 mg, 4.24×10^{-5} mol, 2 eq with respect to Pt) was then added and the stirring was continued for further 120 min.

The functionalization of SLN with the $Pt(PTA)_2$ group was then observed by ^{31}P NMR analysis (Table 1).

The suspension was characterized as below reported and used for biological assays.

It was possible to obtain complete release of platinum from SLN through the addition of hydrochloric acid in equivalent ratio to PTA (0.1 M, 0.3 mL). After a few minutes, the expected formation of *cis*-[(PTA)₂PtCl₂] was observed by ³¹P NMR (Table 1).

2.5. Characterization of SLN: size, zeta potential, morphology and X-ray diffraction

Submicron particle size of SLN was determined using a Zetasizer Nano S90 (Malvern Instruments Ltd., UK) equipped with a 4 mW helium neon laser with a wavelength output of 633 nm. Measurements were made at 25 °C at an angle of 90 °C. Samples were diluted 1:10 (v/v) with the aqueous phase of each formulation. Each experimental value results from three independent experiments performed in triplicate [23].

The zeta potential of SLN was determined by the measurement of the electrophoretic mobility using a Zetasizer Nano S90 (Malvern Instruments Ltd., UK). All samples were diluted with ultra-purified water prior to the measurements. Measurements were carried out at 25 °C.

Morphological characterization was performed by Cryo-transmission electron microscopy (Cryo-TEM) analysis. Samples were vitrified as described in a previous study by Esposito and colleagues [29]. A drop of dispersion was placed on a lacey carbon film-coated copper TEM grid (200 mesh, Science Services). Most of the liquid was removed with blotting paper, leaving a thin film stretched over the carbon film

Table 1³¹P NMR data in D₂O.

	Chemical shift (ppm)	$^{1}J_{\text{PtP}}$
PTA cis-[Pt(PTA) ₂ NPCOO ₂], [Pt(PTA) ₂ NPCOO ₂] cis-[PtCl ₂ (PTA) ₂]	—100 ppm —63 ppm —48 ppm	/ 3475 Hz 3425 Hz

Download English Version:

https://daneshyari.com/en/article/5435037

Download Persian Version:

https://daneshyari.com/article/5435037

<u>Daneshyari.com</u>