Contents lists available at ScienceDirect

Synthetic Metals

journal homepage: www.elsevier.com/locate/synmet

Research paper

Hierarchical mesoporous Co₃O₄/C@MoS₂ core–shell structured materials for electrochemical energy storage with high supercapacitive performance

Binghu Wang^a, Wensheng Tan^b, Renjun Fu^c, Huihui Mao^a, Yong Kong^a,*, Yong Qin^a, Yongxin Tao^a

^a Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China

^b Changzhou Key Laboratory of Large Plastic Parts Intelligence Manufacturing, Changzhou College of Information Technology, Changzhou 213164, China

^c Changshu Changel Chemical Co., LTD., Changshu 215522, China

ARTICLE INFO

Keywords: Co₃O₄/C@MoS₂ Core-shell structure Metal-organic frameworks Electrochemical energy storage Supercapacitor

ABSTRACT

Hierarchical mesoporous $Co_3O_4/C@MoS_2$ core-shell structured materials are synthesized via a two-step calcination and a solvothermal method using cobalt metal-organic frameworks (cobalt-MOFs, ZIF-67) and $(NH_4)_2MoS_4$ as the precursors of Co_3O_4/C and MoS_2 , respectively, which is a new class of core-shell materials as supercapacitor electrode materials. The obtained $Co_3O_4/C@MoS_2$ exhibits high specific capacitance (1076 F g⁻¹ at 1 A g⁻¹), rate capability (76.9% capacitance retention at 10 A g⁻¹) and cyclic stability (64.5% capacitance retention after 5000 cycles at 10 A g⁻¹). Moreover, the content of MoS_2 greatly influences the electrochemical performances of the obtained core-shell materials. The results demonstrate that the as-synthesized ZIF-67 can be used as a promising candidate for designing Co_3O_4 based core-shell materials used in supercapacitors.

1. Introduction

Nowadays, energy problems have become the greatest focus attracting the world's attention and triggering great efforts for energy storage and conversion [1,2]. Owing to excellent cyclic stability, high energy density, superior power density and environmental friendliness, electrochemical capacitors (ECs) are considered as an ideal energy storage system [3,4]. ECs can be divided into electric double-layer capacitors and pseudocapacitors according to the mechanism of charge storage [5], and pseudocapacitors have attracted increasing attention due to their fast redox kinetics and large capacitance [6]. Recently, reduced graphene oxide (rGO)/transition metal oxides have been used for pseudocapacitors (e.g. rGO/Fe₂O₃ [7], rGO/CuO [8]). Among numerous transition metal oxide candidates, Co3O4 is known as an ideal electrode material for pseudocapacitors because of its ultrahigh theoretical capacitance (3560 F g⁻¹) and superior electrochemical performances [9]. However, in many cases, the observed specific capacitance (C_{sp}) of Co₃O₄ is far lower than the theoretical value on account of their large volume changes, low electronic conductivities and polarization during cycling [10]. One approach to circumvent this problem is to find effective supports such as various nanostructured carbon materials to uniformly disperse Co₃O₄ nanoparticles.

Metal-organic frameworks (MOFs) are a kind of organic-inorganic hybrid materials possessing large specific surface area and high porosity [11,12], and many research efforts have been focused on MOFs [13,14], MOFs-derived carbon [15–17], MOFs-derived sulfide [18] and their complexes [19–22] for electrochemical devices. Recently, cobalt-MOFs have been proved to be ideal sacrificial templates to fabricate porous carbon nanostructures or metal oxides via thermolysis in controlled atmospheres. The Co₃O₄ synthesized by this method exhibits special three-dimensional (3D) and open-framework structures, facilitating the transportation of electrolytes to attain enhanced capacitance. In addition, the Co₃O₄ derived from cobalt-MOFs owns favorable rate capability due to the maintained structure in the repeated charge-discharge process. As far as we are aware, the design and synthesis of Co₃O₄ based core-shell materials such as Co₃O₄@MnO₂, Co₃O₄@Ni(OH)₂ and Co₃O₄@NiMoO₄ have drawn great attention due to their excellent electrochemical performances when used as supercapacitor electrode materials [23–25].

MoS₂, a graphene-like 2D material, has shown unique structural and electronic properties [26]. MoS₂ is composed of covalently bonded S-Mo-S sheets combined by van der Waals force [27], and the structure of MoS₂ makes it a promising candidate as electrode material [28]. More importantly, MoS₂ coated 3D graphene networks or dispersed on amorphous carbon can facilitate the transportation of electrons [29,30]. Therefore, MoS₂ is considered to be a potential supercapacitor electrode material. Liang et al. [31]. have fabricated a MoS₂-Co₃O₄ composite via anchoring Co₃O₄ particles onto the surface of MoS₂ nanosheets, which

http://dx.doi.org/10.1016/j.synthmet.2017.09.011

0379-6779/@ 2017 Elsevier B.V. All rights reserved.

CrossMark

^{*} Corresponding author. E-mail addresses: yzkongyong@126.com, yzkongyong@cczu.edu.cn (Y. Kong).

Received 16 July 2017; Received in revised form 7 September 2017; Accepted 22 September 2017 Available online 13 October 2017

shows significant increase in the capacitive performance compared with Co_3O_4 alone. Herein, we synthesize a $Co_3O_4/C@MoS_2$ core-shell structured material via a two-step calcination and a solvothermal method by using ZIF-67 and $(NH_4)_2MoS_4$ as the precursors of Co_3O_4/C and MoS_2 , respectively. The obtained core-shell material exhibits high structural stability and fast transmission capacity for electrolyte ions and electrons.

2. Experimental

2.1. Reagents and apparatus

Cobalt nitrate hexahydrate (Co(NO₃)₂· $6H_2O$), 2-methylimidazole and dimethylformamide (DMF) were purchased from Aladdin Chemicals Reagent Co., Ltd. (Shanghai, China). Ammonium tetrathiomolybdate ((NH₄)₂MOS₄) was received from J & K Chemical. All other reagents not mentioned were of analytical grade and used as received. All aqueous solutions were freshly prepared with ultrapure water (Milli-Q, Millipore).

FT-IR spectra were recorded on a FTIR-8400S spectrometer (Shimadzu, Japan). X-ray diffraction (XRD) analysis was carried out on a Rigaku D/max 2500PC diffractometer. The morphologies of Co_3O_4/C and Co_3O_4/C @MoS₂ were characterized by transmission electron microscopy (TEM) using a JEM 2100 transmission electron microscope (JEOL, Japan). X-ray photoelectron spectroscopy (XPS) was performed on an ESCALAB 250Xi spectrometer (Thermo Fisher Scientific, USA). Brunauer-Emmett-Teller (BET) specific surface areas and pore size distribution were determined using an ASAP 2010 specific surface area and pore size analyzer (Micromeritics, USA). Thermogravimetry (TG) and differential thermogravimetric (DTG) analysis were carried out on a TG209F3 thermal analyzer (Netzsch, Germany). The electrochemical properties of the materials were evaluated using a CHI 660D electrochemical workstation (China).

2.2. Preparation of ZIF-67 and Co₃O₄/C

ZIF-67 was prepared according to the procedures previously reported [32]. Typically, $0.9 \text{ g Co}(\text{NO}_3)_2$ 6H₂O and 11 g 2-methylimidazole were dissolved in 6 mL and 40 mL of ultrapure water, respectively, and then the two solutions were mixed and magnetically stirred for 6 h at room temperature. The precipitated purple products were centrifuged and collected, washed with ultrapure water/ethanol successively and repeatedly, and finally dried at 80 °C for 24 h.

 $\rm Co_3O_4/C$ was prepared via a two-step calcination method. The synthesized ZIF-67 was firstly calcined at 700 °C for 5 h in $\rm N_2$ atmosphere for the preparation of Co/C, and then the obtained Co/C was calcined at 270 °C for 15 h in air atmosphere for the preparation of Co₃O₄/C.

2.3. Preparation of Co₃O₄/C@MoS₂

Different amounts of $(NH_4)_2MoS_4$ (10, 20, and 30 mg) were dissolved respectively in 50 mL of DMF to form homogeneous solutions, and then three samples of 50 mg Co₃O₄/C were dispersed to the above solutions under sonification. Next, the resultant mixture was solvothermally treated in a stainless steel autoclave at 200 °C for 10 h. After that, the mixture was centrifuged at 4000 rpm. The obtained products denoted as Co₃O₄/C@MoS₂-10, Co₃O₄/C@MoS₂-20 and Co₃O₄/C@MoS₂-30 were thoroughly washed with ultrapure water/ ethanol several times and then dried at 60 °C. For a control experiment, MoS₂ was prepared from 20 mg (NH₄)₂MoS₄ according to the similar procedures for Co₃O₄/C@MoS₂ except the addition of Co₃O₄/C.

2.4. Electrochemical measurements

All electrochemical experiments were carried out at room temperature in a conventional three-electrode system consisting of a glassy carbon electrode (GCE, 3 mm in diameter) modified with the active materials as the working electrode, a platinum foil as the counter electrode and a KCl saturated Ag/AgCl electrode as the reference electrode. 2 M KOH aqueous solution was used as the electrolyte. The working electrode was fabricated as follows. First, 4 mg of the active materials (MoS₂, Co₃O₄/C, Co₃O₄/C@MoS₂-10, Co₃O₄/C@MoS₂-20 or Co₃O₄/C@MoS₂-30) was dispersed in 2 mL of ultrapure water. Next, 5 µL of the dispersion was dropped onto the surface of GCE and allowed to dry in ambient air (mass loading: $142 \,\mu g \, \text{cm}^{-2}$). Cyclic voltammograms (CVs) of these electrodes were collected over the potential range from 0 to 0.7 V, and the galvanostatic charge/discharge (GCD) measurements were carried out over the potential range from 0 to 0.5 V. Cycling stability test was performed by repeating the GCD measurements at a current density of 10 Ag^{-1} . Electrochemical impedance spectroscopy (EIS) was carried out at -0.1 V in the frequency range from 10⁶ to 0.01 Hz with an alternating sinusoidal signal of 5 mV. The equivalent circuit of the Nyquist plots was simulated by the ZSimpWin software.

$$C_{sp} = \frac{1 \times t}{m \times V}$$

mvV

Fig. 1. Schematic illustration showing the preparation of $Co_3O_4/C@MoS_2$.

Download English Version:

https://daneshyari.com/en/article/5435320

Download Persian Version:

https://daneshyari.com/article/5435320

Daneshyari.com