
Full length article

Density power law and structures of metallic glasses
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a b s t r a c t

The existence of a universal power law relating the position of the first sharp diffraction peak (q, FSDP) to
the density (r or the volume V) with a constant exponent <3 has been debated in the last decade. A
constant dimensionality is important because it reflects the fractal topology of the glass structures. In
this study, the validity of the Ehrenfest equation applied to multi-component metallic glasses is exam-
ined using first-principles molecular dynamics calculations. The results show that the Ehrenfest coeffi-
cient depends on the local structures of the glasses and is not a constant for all glasses. Moreover, since
the diffraction pattern is determined by the scattering between atom pairs, in a multi-component glass,
the X-ray diffraction FSDP is only sensitive to the heavy atoms, and the observed P-q relationship does
not necessary correspond to the PeV equation of state of the bulk material and is not always a suitable
indicator for monitoring structural phase transitions or volume changes. On the other hand, for suitable
systems, neutron diffraction is a reliable method to determine the structural features of both heavy and
light atoms. In this study, the simulated neutron diffraction patterns of Ca72$7Al27.3 metallic glasses show
a clear splitting of the FSDP at the pressure where the pressure-induced polyamorphism transition oc-
curs. From the presented results, there is no justification for expecting the existence of a universal power
scaling law with a constant exponent for all glasses.

© 2017 Published by Elsevier Ltd on behalf of Acta Materialia Inc.

1. Introduction

Metallic glasses have attracted intense attention because of
their superior properties, such as high strength, hardness, elasticity,
high corrosion resistance and unique magnetic properties [1e7].
However, thesematerials also display several shortcomings, such as
low glass forming ability and low production efficiency that have
hindered the wider applications of such materials. To further
improve the properties of metallic glasses, especially those of
multi-component systems, it is essential to acquire an under-
standing of the glass structures at the atomistic level. To explore the
configuration space, it is useful to establish empirical rules of
property-property and property-structure correlations. In practice,
correlations between properties are often easy to derive from
experimental data. For example, quantitative correlations have

been established between ductility, fragility and Poisson's ratio for
a number of metallic glasses [2]. On the other hand, the validity of
property-structure correlations is muchmore difficult to assess due
to the lack of knowledge of the micro-structures of metallic glasses
caused by experimental difficulties.

Despite the complication of disorder, diffraction using X-rays
(XRD) or neutron is by far the most often used technique for the
characterization of the structures of metallic glasses. The diffraction
patterns (structure factors S(q)) of the different metallic glasses are
often similar, with the position of the first sharp diffraction peak
(FSDP) located at q ¼ 2e3 Å�1. The interplanar d-spacing, d ¼ 2p/q,
has been found to be close to the first-neighbor atomic distance [8].
This observation has often been used to justify the use of the well-
known Ehrenfest relationship [9],

q ¼ 2pk=r (1)

where k is a proportionality constant (Ehrenfest coefficient)
relating the shortest interatomic distance to the position of the
FSDP. Recently, a q-r correlation was found by the combination of a
nanobeam electron diffraction experiment and ab initio molecular
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dynamics simulations for the Zr66$7Al33.3 metallic glass [10]. The
question is whether this relationship with a “universal” k is appli-
cable to all glasses. If the Ehrenfest relationship is transferable to
different metallic glasses and the shortest interatomic distance
scales with the volume, then a general density power scaling law is
expected, as given by
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Here, the subscripts 0 and 1 represent the reference structure
and the target structure, respectively. The power factor D should be
equal to 3 if the disordered structure is macroscopically isotropic.
This is because an isotropic disordered structure can be regarded as
a cubic cell with an infinitely large lattice constant a. It is not un-
reasonable to assume that the variation of the interatomic distance
d is proportional to a, so that the cell volume can be described as
V ¼ a3 f d3. From the analysis of a selected set of metallic glass at
ambient pressure, Ma et al. reported a power constant of 2.31 [11].
This unexpected scaling factor introduced a new perspective on the
structural dimensionality and the fractal geometry that may have
important implications for the glass structures. However, this
scaling factor was later found not to be rigorous. Cheng et al.
demonstrated that the power scaling constant of 2.31 is not uni-
versal and the value can vary for different metallic glasses or liquids
with different atomic packing topologies [2]. For instance, a value of
2.658 was obtained by fitting data for the CuxZr100-x metallic
glasses [2,12]. Gangopadhyay et al. [13] reported the breakdown of
Ehrenfest's relation in alloy liquids from the thermal expansion
measurements by x-ray scattering, and a density scaling factor
value of 2.28 was fitted from the collected data. Recently, Zeng et al.
[8] and Chen et al. [14] suggested another power scaling constant of
2.5 in compressed metallic glasses. More surprisingly, this rule
apparently even holds in Ce-based glasses that are known to un-
dergo polyamorphism structural transitions under pressure [8,14].
The contradictory and inconsistent results deepen the controversy
regarding a universal structure-property correlation for metallic
glasses. A closer re-examination of the data of Zeng et al. [8] shows
that different values of the power scaling constant can also be
extracted for different systems, even though all of these are very
close to the proposed value of 2.5. To establish the fractal charac-
teristics of metallic glasses, extensive sets of highly accurate
experimental data are required. Moreover, one fundamental ques-
tion that needs to be considered is the general applicability of the
Ehrenfest relationship in metallic glasses. Therefore, the purpose of
the present investigation is to examine the validity of the correla-
tion between the position of the FSDP (q) and the density of
multicomponent metallic glasses under pressure.

The Ehrenfest equation central to the present issue and the q-r
relationship have already been analyzed in detail in Guiner's clas-
sical book on the powder diffraction of amorphous solids It was
shown that for amorphous solids the expression

q ¼ ð2p� 1:23Þ=r (3)

holds as long as the effective volume (i.e., the sum of the atomic
volumes) is much smaller than the total volume. It was further
asserted that the relationship is only applicable to monoatomic
gaseous systems and not to polyatomic solids [9]. In addition, the
constant k in equation (1) is expected to have different values for
different solids. For instance, the theoretical values of k are 1.22,
1.23 and 1.15 for the face-centered cubic (FCC), the body-centered
cubic (BCC) and the close-packed hexagonal (HCP) structures,
respectively. The large difference in the k values between the FCC
and HCP structures is noteworthy in view of the equivalent sphere

packing densities for these structures. While for compressed
metallic glasses, the structures are often assumed to be already
close-packed, it has been proven both theoretically and experi-
mentally that the local structures can change under compression
[15,17]. In a previous study of the Ca72$7Al27.3 metallic glass, a pol-
yamorphic transition with an unexpected increase in coordination
numbers was found and characterized [18,19]. Therefore, it is highly
doubtful that the Ehrenfest coefficient k would remain constant
under different structural environments. If a “magic number” for
the power scaling constant (e.g., 2.5) does not exist in compressed
metallic glasses, this implies that the PeV equation of state is not
equivalent to the P-q relationship. In other words, one cannot rely
solely on the observed variation in the P-q curve as the proof for a
structural phase transition. This procedure is commonly used in the
study of glasses and other disordered solids. As mentioned above,
the values of the theoretical Ehrenfest coefficient k for ideal mon-
oatomic FCC, BCC and HCP structures are different and are appar-
ently close to the value of 1.23 (eqn. (3)) obtained for a disordered
system. However, a 4% deviation in k will be amplified to the vol-
ume difference of 12% (1.043e1.0). This volume difference is
significantly larger than the volume change usually associated with
a typical polyamorphic transition in metallic glasses.

First-principles molecular dynamics calculations (FPMD) have
proven to be reliable for reproducing the structures of many
metallic glasses [10,15]. In our previous FPMD studies on the
amorphous systems including metallic glasses and silica glasses,
despite the relative small unit cell employed in the calculations
(100e200 atoms), the calculated S(q) or the FSDP agree very well
with the experiment results (Supplementary Material Fig. S1). The
reason being that the position of FSDP q has an inverse relationship
with the “interplanar” distance d, q ¼ 2p/d. Since the FSDP posi-
tions of the metallic glasses considered in the present study are
around 2e3 Å�1, i.e. the interplanar distances contributing to the
FSDP is about 2e3 Å. As supercells of about 10 Å were used in the
simulations, due to the use of periodic boundary conditions, the
interatomic distance is reliable up to half of the model cell or
around 5 Å. In the present work, FPMD calculations were per-
formed on three XeAl (X ¼ Ce, Ca and La) metallic glasses with
similar stoichiometries but very different behaviors under pressure
in order to examine the Ehrenfest relationship and the fractal
characteristics of the glasses. In particular, the Ce75Al25 metallic
glass has been found to undergo a structural transition at 1.5e5 GPa
attributed to the Ce 4f/5d rehybridization and then transform to a
crystalline FCC solid solution at 25 GPa [20]. The main group
Ca72$7Al27.3 metallic glass also shows a polyamorphism transition
due to the change of chemical bonding between the Ca 3d and Al 3p
orbitals [19]. To date, no polyamorphism transition has been re-
ported in the La75Al25 metallic glass even though it has been
speculated that the local atomic environment may change contin-
uously under compression [21]. In the following, a systematic
comparison of the theoretical results obtained for these three
systems will be presented and discussed. The goal is to examine the
Ehrenfest relationship to either confirm or refute the existence of a
universal power scaling law in compressed metallic glasses.

2. Methods

FPMD calculations of the metallic glasses were performed with
the Vienna Ab initio Simulation Package (VASP) based on the density
functional theory [22,23]. Interactions of the valence and core
electrons were represented by projected augmented wave (PAW)
potentials [24]. Valence electronic configurations of
5s25p64f15d16s2, 3s23p64s2, 5s25p65d16s2 and 3s23p1 were used for
Ce, Ca, La and Al, respectively. Since the DFT method fails to
describe the localized 4f electronic state under ambient pressure
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