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a b s t r a c t

The solidification of eutectic alloys generally produces two-phase microstructures. Their morphology is
determined by the dynamics of the solid-liquid interfaces at the crystallization front. At the triple lines,
where the liquid and the two solid phases meet, solid-liquid and solid-solid surface free energies are in
local equilibrium. We perform three-dimensional phase-field simulations with a multi-phase-field
model in which the surface free energies can be independently controlled. We find that an anisotropy
of the interphase boundary (solid-solid) energy has a strong effect on the microstructural patterns. The
lamellae tend to align with directions of minimal interphase boundary energy. For a two-fold anisotropy,
as generally expected for interphase boundaries between two cubic crystals, regular lamellar arrays are
formed, in strong contrast to the labyrinth patterns observed in isotropic systems. If two different grains
compete, the one with the lowest interphase boundary energy always overgrows the other. These results
are consistent with observations in bulk metallic eutectic samples, namely, the frequent occurrence of
large regular lamellar arrays and the prevalence of grains with special orientation relationships.

© 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Eutectic alloys solidify naturally into two-phase composites that
find application in many engineering domains, particularly in high-
strength materials [1,2]. During the crystallization, the two phases,
which are of different chemical compositions, exchange solute by
diffusion through the liquid region adjacent to the growth front.
The geometric arrangement of the two phases results from a
pattern formation process that is governed by the interplay be-
tween diffusion and capillarity. Many features of this coupled
growth mode are well understood since the works of Zener [3],
Hillert [4], and Jackson and Hunt [5]. Two basic patterns of the
phases are widespread: if the volume fractions of the two solid
phases are comparable, they self-organize in alternating platelets
(lamellae); otherwise, rods of the minority phase are dispersed in a
continuous matrix of the other phase [5e7]. Other patterns that
exhibit more complex symmetries or are disordered have also been
investigated in many experiments and numerical simulations

[8e14].
There are number of experimental observations, however, that

are not accounted for by these theories and simulations. One
example is the fact that lamellae often grow tilted, that is, they form
a finite angle with respect to the direction of the temperature
gradient. This and other phenomena can be linked to crystallo-
graphic effects, which have largely been omitted in theories and
models up to now. A eutectic composite generally consists of
eutectic grains, in which the orientation of the crystallographic axes
is the same for all the domains (lamellae, rods) of a given phase
[15]. This implies that the relative orientation of the two solid
phases is also fixed in each (eutectic) grain; it may vary, however,
between different grains of the same sample.

Regular eutectics have solid-liquid interfaces that are rough on
the atomic scale, which are expected to be only weakly anisotropic.
In contrast, the solid-solid interfaces (interphase boundaries, IB)
can be strongly anisotropic and may exhibit facets even in regular
eutectics. It has been found that the solidification dynamics
strongly depends on the properties of the IB [16]. So-called floating
grains, in which the IB are weakly anisotropic, conform to the
theoretical predictions made by the theories with isotropic in-
terfaces and grow parallel to the temperature gradient; in contrast,
in locked grains, the IB follow specific crystallographic directions, so
that lamellae can be strongly tilted with respect to the direction of
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the temperature gradient [17].
Recently, this situation was examined more quantitatively in

experiments using a rotating directional solidification setup [17],
and was also analyzed theoretically [18]. The theory predicts that
anisotropy of the IB alone (whereas the solid-liquid interfaces
remain isotropic) can lead to the observed tilted growth. This is
quite remarkable, since the anisotropy of the IB enters the classic
free-boundary problem of eutectic growth only through the local
equilibrium condition at the trijunction point. The prediction for
the growth direction was verified by direct numerical simulations
of eutectic growth in two dimensions, using both boundary-
integral and phase-field methods [19,20].

Here, we present three-dimensional phase-field simulations of
eutectic solidification performed with the same model as in
Ref. [19]. Eutectic solidification with anisotropic interfaces has
already been studied recently by phase-field modelling [21,22], but
with models in which the anisotropy of solid-liquid and solid-solid
interfaces cannot easily be controlled separately. In our model, we
can independently set the anisotropy of each interface, which al-
lows us to probe the fundamental mechanisms of pattern forma-
tion more precisely. We focus here on systems with isotropic solid-
liquid and anisotropic solid-solid interfaces. With respect to
Ref. [19], the main new question that we address here is the effect
of an anisotropy in the plane of the isotherms (azimuthal plane),
which can obviously not be investigated by two-dimensional sim-
ulations. Such an anisotropy breaks the rotational symmetry of the
problem in the azimuthal plane, and can thus be expected to have a
strong effect. Here, we limit ourselves to anisotropy functions with
simple regular m-fold symmetry (m ¼ 2, 4) and to a model eutectic
alloy with symmetric phase diagram, and focus on qualitative dif-
ferences between eutectic growthwith isotropic and anisotropic IB.

We find that the dynamics of pattern formation is strongly
altered by the presence of anisotropy. The lamellae tend to align
with directions of minimal IB energy. For a four-fold anisotropy, this
leads to two families of lamellae that are perpendicular to each
other; for two-fold symmetry, a single orientation is favored, and a
well-ordered lamellar state is rapidly reached. This is in strong
contrast to the “labyrinth” structures observed in isotropic systems
[11,13]. The rate of ordering increases with the strength of the
anisotropy.

We also perform simulations in which two grains with different
anisotropy functions compete, in order to study the question of
grain selection. Anisotropic grains with low-energy IB tend to
rapidly outgrow the others. These results are compatible with the
experimental observations that eutectic grains with special orien-
tation relationships between the phases are frequently observed in
bulk samples, and that regions of ordered and perfectly parallel
lamellae are very frequent [23e27].

The structure of the article is as follows. In Sec. 2, we briefly
describe the main elements of the phase-field model used to
simulate anisotropic eutectic growth. Then, we outline the details
of the simulation procedure, the choice of parameters and some
details of our data analysis. In Sec. 3, we present the results and
discuss the mechanisms of the microstructural evolution.
Following an overall discussion in Sec. 4, we give conclusions and
perspectives in Sec. 5.

2. Methods

2.1. Phase-field framework

Phase-field models have become a standard tool for the
modelling of microstructure evolution during solidification and
solid-state transformations [28e30]. The principle of this method is
to describe the geometry of the evolving structures by time-

dependent scalar phase fields that take uniform values in the
bulk and vary continuously through the interfaces. Thus, front
tracking is avoided, and the model equations can be integrated in
time by simple algorithms that are easy to parallelize. Here, we
have used a recent multi-component grand-canonical phase-field
formulation that has been detailed elsewhere [19,31,32]. We will
briefly describe the ingredients that are most relevant to the
anisotropic growth of a binary eutectic alloy solidifying into a and b

solids.
We assume that there is no convection in the liquid; solute is

transported in the liquid by diffusion only, while the diffusion in the
solids is neglected (one-sided model). N ¼ 3 phase fields, namely,
fa, fb and fl, equivalent to local volume fractions, describe the

structures, and obey the constraint
PN

i¼1fi ¼ 1.
The starting point is a grand-canonical free energy functional,

U ¼
Z
V
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where 3 is a length scale parameter related to the numerical

interface thickness, and aðf; V!fÞ is the gradient energy density
given by
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fi is a vector normal to the i-j interface,bqij ¼ q!ij∕j q!ijj the corresponding unit vector, and aijc ðbqijÞ is the

anisotropy function of the i-j interface. For isotropic interfaces,

aijc≡1; gij is the isotropic part (mean value) of the interface energy.
Moreover, W ðfÞ in Eq. (1) is a multi-obstacle potential,
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The simplex S is bounded by fi � 0 and
PN

i fi ¼ 1, and gijk is a
third-order potential term which prevents the appearance of any
unwanted “foreign” phases in the binary interfaces.

The function u(m,T,f) in Eq. (1) is the grand-canonical potential,
where m is the diffusion potential (the thermodynamic conjugate of
the concentration field c). For each phase, ui is the Legendre
transformation of the concentration-dependent Helmholtz free
energy density, fi. The complete function u is then obtained by an
interpolation between the phases,

uðm; T ;fÞ ¼ PN
i¼1

uiðm; TÞhiðfÞ (4)

uiðm; TÞ ¼ fi � mc; (5)

with hiðfÞ ¼ f2
i ð3� 2fiÞ þ 2 fifjfk a weight function that satisfiesPN

i¼1hiðfÞ ¼ 1. For the free energies, fi, we take parabolas with
equal curvatures, as detailed in Refs. [19,33].

The diffusion potential obeys a diffusion equation with a source

term. An anti-trapping current j
!

at is added to the diffusion cur-
rents to counteract spurious solute trapping at the interfaces and
thus guarantee the correct thin interface limit [32,34,35]:

S. Ghosh, M. Plapp / Acta Materialia 140 (2017) 140e148 141



Download English Version:

https://daneshyari.com/en/article/5435762

Download Persian Version:

https://daneshyari.com/article/5435762

Daneshyari.com

https://daneshyari.com/en/article/5435762
https://daneshyari.com/article/5435762
https://daneshyari.com

