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Alloy design as an inverse problem of cluster expansion models
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a b s t r a c t

Central to a lattice model of an alloy system is the description of the energy of a given atomic configuration,
which can be conveniently developed through a cluster expansion. Given a specific cluster expansion, the
ground state of the lattice model at 0 K can be solved by finding the configuration of solutes that minimizes
the energy of the system. In this paper, we develop amethod for solving the inverse lattice problem, where,
given a broad class of potential, we find the ground states for all possible values of the effective cluster
interaction energies. To do so, we formulate the inverse problem in terms of energetically distinct config-
urations, using a constraint satisfaction model to identify constructible configurations, and show that a
convexhull canbeused to identifyground states. Todemonstrate theapproach,wesolve forall groundstates
fora binaryalloy in a2Dhexagonal lattice bothwithandwithoutan interface, basedonpairwise interactions.

© 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Statistical mechanics models of alloys assign probabilities to the
possible configurations of alloying elements and, based on aMaxwell-
Boltzmann distribution, determine the equilibrium state of the alloy.
Describing the configuration space of the alloy inevitably requires
some approximation. The simplest models rely on assumptions of
random distributions of each alloying element, either in the entire
system, as in an ideal solution model, or within any phase as in a
regular solution model. A major improvement to capturing configu-
rational degrees of freedom is a lattice model, also known as the
generalized Isingmodel [1]orClusterExpansion [2] (CE)model,where
each lattice site represents a single atomof aparticular elementwith a
pseudo-spinoccupancyvariablesi that, for thebinarycase, is�1orþ1
for a solute or solvent atom, respectively. The energy of an alloy
configuration, s, in the lattice model with a cluster expansion inter-
atomic potentialV, can generally be defined by the Hamiltonian [3]:

Hðs;VÞ ¼ V0 þ
X
c2C

Vcsc (1)

where C is the set of clusters for which effective cluster interactions
(ECIs), Vc, are prescribed. sc is a generic cluster function defined as
the product of si over all sites in a cluster and captures the solute
configuration of the cluster. While a fixed site geometry still con-
strains the configuration space considered, lattice models are a
remarkably accurate tool for developing phase diagrams of alloys,
where a cluster expansion can be performed from ab-initio calcu-
lations [2e13].

The 0 K phase diagram is determined by the alloy configurations
that minimize Equation (1) at different solute concentrations. The
problem of merely solving for the minimum energy configurations
we term the ‘forward problem’. Conversely, the much more com-
plex ‘inverse problem’ is the one underlying alloy design, where,
given a desired alloy configuration the objective is to determine
which alloy systems, if any, possess this configuration as an equi-
librium state. The possible ground states of the alloy model are
those for which there exists a parameter set V that minimizes en-
ergy according to Equation (1). While the relationship between
energy and the cluster functions is linear, finding all possible
ground states is difficult due to the constraints imposed on the
cluster functions by the lattice, namely the integrality constraint of
equalling �1 or 1.

Allen and Cahnwere able to solve this inverse problem for body-
centered cubic and face-centered cubic lattices where the inter-
atomic potential is constrained to nearest-neighbor and next-
nearest-neighbor pairwise bonds [14]. Their approach and the
more general polytope method [15e18] circumvent the integrality
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constraint by first selecting one base cluster (e.g. an octahedron for
the body-centered cubic lattice), and then determining all possible
ways inwhich the alloying elements can occupy sites in this cluster,
assigning each configuration on the cluster a probability weight
from 0 to 1. Since probability is a continuous function, this problem
can be solved by standard linear programming techniques to
determine all possible equilibrium states.

However, not all combinations of probabilities for each cluster
are constructible in a larger lattice, and thus additional rules must
be defined to ensure that a ground state determined in this way
represents a physical system. In a crystalline phasewith short range
interactions, these rules can be reasonably simple, but in more
complex systems constructibility can be a cumbersome problem
[18]. Inverse problems in certain disordered systems, such as
hyperuniform glasses, have been studied to determine the inter-
atomic potentials that lead to disordered ground states [19,20], but
are beyond the scope of a standard cluster expansion representa-
tion. There has been growing interest in studying chemical
ordering at interfaces, such as grain boundaries, and constructing
phase diagrams (also known as complexion diagrams) of the
segregation and ordering at these interfaces [21e30]. Such prob-
lems have an inhomogeneous cluster expansion, since clusters at an
interface have different energies than ones in the crystal, which
makes use of the polytope method more challenging. Even in
crystalline phases, considering clusters with longer range in-
teractions can be challenging within the polytope method as a
larger base cluster must be chosen leading to a larger number of
potential configurations and more complex constructibility
considerations.

The forward problem of finding ground states in complex sys-
tems has recently been formulated by Huang et al. [31] as a class of
problem known as pseudo-Boolean optimization [32] (PBO). PBO
models, which consist of an objective function to be optimized and
a set of constraints to be satisfied, greatly improve the generality
and speed of solving lattice models given a cluster expansion. In
this paper, we present a framework for solving the inverse problem
of the lattice model directly in the configuration space of the lattice
using a constraint satisfaction model. We then investigate the
ground state ordered states in a 2D hexagonal lattice both with and
without an interface to demonstrate how all possible configura-
tions with a given potential form can be calculated.

2. The inverse problem in lattice models

The forward problem asks: for a specified V, what is the ground
state configuration? A configuration s is a ground state if it has a
lower energy than all other configurations:

Hðs;VÞ < H
�
s

0
;V

�
cs

0
ss (2)

Then, the inverse problem asks: for a specified configuration s,
does there exist a set V for which s is the ground state? Here, the
space of interactions being considered (e.g. nearest neighbor, next-
nearest neighbor, etc.) is constant. We denote such a configuration
as minimizing. It must satisfy the condition:

dV s:t: Hðs;VÞ < H
�
s

0
;V

�
cs

0
ss (3)

Thus, to solve the inverse problem, all possible ECIs as well as all
possible configurations must be considered in order to find the
ground states. In order to make this tractable, we will first reduce
the configuration space to a smaller, abstract space, and then use
arguments based on principles of convexity to identify minimizing
configurations.

In order to reduce the configuration space, we note that the
Hamiltonian in Equation (1) can be expanded to lattice-gas [33]
form:

Hðx;EÞ ¼ E0 þ
X
j

X
c2Cj

Y
i2c

Ejxi (4)

where spin variables si2f�1;1g of the cluster function have been
replaced by a binary variable xi2f0;1g using the relation
si ¼ 2xi � 1, and E is the equivalent set of ECIs. For each cluster
instance we can then define a binary variable yc ¼

Q
i2c

xi which

denotes cluster instance activity, where 0 and 1 denote an inactive
and active cluster instance respectively. Using Equation (4), the
Hamiltonian can then be rewritten in the number of active cluster
instance (ACI) counts:

Hðx;EÞ ¼ 〈E;N〉 (5)

where N ¼ f P
c2C1

yc;
P

c2C2

yc;
P

c2C3

yc;…g is the vector of ACI counts

(ACI vector). Representing a configuration as an ACI vector is a
much more compact description and permits a simpler expression
of the Hamiltonian. Using this parametrization, we define the ‘en-
ergy space’ VðNÞ of a configuration as the region of ECI space for
which it is a ground state:

VðNÞ ¼ fEj hE;Ni < hE;N0ic N0sNg (6)

where N and N0 denote constructible bond count vectors with the
same number of solute atoms.

Determination of the minimizing configurations proceeds by
identifying the convex hull [34] of configurations. The maximum
principle [35] states that the maximum (or equally, minimum) of
any convex function on a compact convex set is attained at the
boundary of the set. Thus, in order to exploit the maximum prin-
ciple, we require a convex function of a convex compact set. If we
relax the implicit integrality constraints on N, the inner product in
Equation (5) is a sum of linear functions, which is a convex function.
Next, let S ¼ fN1;N2;N3;…g be the set of all constructible ACI
vectors for a given set of clusters. Then, the convex hull of S is by
definition a compact convex set. By restricting the domain (N) of
the Hamiltonian in Equation (5) to the convex hull of S, we satisfy
the necessary conditions of the maximum principle. As such, we
can state that all possible ground states for a given Emust lie on the
boundary of the convex hull of S. For practical reasons we can
tighten the definition: any minimizing configuration must lie on a
vertex of the convex hull of S. We can do this since any configura-
tionwhich lies on a plane of the convex hull has a zero energy space
according to Equation (6).

What the above means is that solving the inverse problem
amounts to finding all states that lie on the vertices of the convex
hull of cluster space, which is a spacewhere each axis is the number
of counts of a given cluster. We illustrate this concept with a 1D
example. Fig. 1 shows a periodic lattice in ℝ1, with bonds between
adjacent sites only, and whose sites are occupied by either A-type
or B-type atoms. Given this energetic model, there are two types of
clusters: 1-body and nearest-neighbor 2-body clusters. For a fixed
concentration of B-type atoms, though, the contribution of 1-body
clusters is the same in each case, meaning there is only one linearly
independent cluster. The ACI vector of any configuration in this
model can therefore be written as a 1D vector, N ¼ fk1gwhere k1 is
the number of nearest-neighbor BeB bonds. As such, the convex
hull of all constructible ACI vectors consists of two points. These
states, which constitute the minimizing configurations of the lat-
tice, correspond to preferences for heteroatomic bonds (Fig. 1a) and
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