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Reactive diffusion and stresses in nanowires or nanorods
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a b s t r a c t

Heterostructured nanowires are of prime interest in nowadays technology such as field-effect transistors,
field emitters, batteries and solar cells. We consider their aging behavior and developed a model focusing
on reactive diffusion in core-shell nanowires. A complete set of analytical equations is presented that
takes into account thermodynamic driving forces, vacancy distribution, elastic stress and its plastic
relaxation. This complete description of the reactive diffusion can be used in finite element simulations
to investigate diffusion processes in various geometries. In order to show clearly the interplay between
the cylindrical geometry, the reactive diffusion and the stresses developing in the nanowire, we inves-
tigate the formation of an intermetallic reaction product in various core-shell geometries. Emphasis is
placed on showing how it is possible to control the kinetics of the reaction by applying an axial stress to
the nanowires.

© 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

In Ref. [1] we presented a complete set of analytical equations to
describe reactive diffusion in spherical core shell nanostructures.
The model takes into account elastic stress, its plastic relaxation, as
well as possible non-equilibrium vacancy densities. Furthermore,
thermodynamic driving forces are included to model the formation
of intermetallic (IM) product phases within an intermediate
composition range. Using this model, we studied the reaction in
spherical triple core-shell structures A/B/A and B/A/B, for which
Schmitz et al. [2] observed that the growth rate depends on the
stacking order. Comparison with the data of atom probe tomogra-
phy (APT) proved that significant deviations from the vacancy
equilibrium concentration develop over time which control sta-
bility and reaction rate of the nanometric diffusion couples.

In this paper, we will present a new set of analytical equations,
this time to describe reactive diffusion in a cylindrical core shell
nanostructure. The interest in the cylindrical geometry stems from
the ever growing importance of nanowires, nanowhiskers and
nanopillars in recent technologies as they are used in new gener-
ation of devices or prototypes in numerous fields: field-effect
transistors [3,4], battery electrodes [5,6], flexible solar cells … [7].
For such applications, homogeneous nanowires are not sufficient.

More elaborate structures, such as core-shell nanowires, are often
necessary. If the core shell structure is lost, for example upon
heating, the function also deteriorates. Consequently, knowledge
about reaction of layers and the developing-relaxing stress field is
indispensable to prevent this deterioration and to construct more
stable structures.

Basic equations describing the reactive diffusion in cylinders are
developed in the following. We will then use computer simulation
in order to solve this set of equations. Various examples will help us
discuss the interplay between diffusion, elastic stress, plastic
relaxation and vacancy concentration. In addition, we will show
that applying external forces on the wires allows controlling the
reaction: either accelerate or decelerate the process, enhance or
hinder the formation of an intermixed phase as desired.

2. Basic equations

In order to keep the analytical formulas transparent, we will
refer to isotropic elasticity. As it was pinpointed by Beke et al. in
Ref. [8], the creation of a new phasewith a different specific volume
from the parent phases during reactive diffusion induces a stress-
free strain. This stress-free strain, in turns, plays a major role in
the kinetics of the process. Therefore, our model needs to describe
the stress-free expansion and plastic deformation as it was already
discussed in Refs. [1,9]. Stress-free expansion is supposed to be
isotropic; accordingly, it has the form ε

SF
ik ¼ ε

SFdik (dik is the unit
tensor). In plastic deformation, volume remains constant, i.e.
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trbεP ¼ 0; i.e. plastic deformation is anisotropic, but it can be sup-
posed that all the non-diagonal elements of the tensor bεP are equal
to zero, therefore its components can be expressed as ε

P
ik ¼ ε

P
ikdik.

Thus, the stress induced by the creation of a new phase after plastic
relaxation can be written as

sik ¼
E

ð1þ yÞð1� 2yÞ f½ð1� 2yÞεik þ nεlldik� �
h
ð1þ yÞεSF

þ ð1� 2ÞnεPik
i
dik

o
(1)

using the Einstein's summation convention. In terms of displace-
ment ( u!), the equation of equilibrium in the case of internal stress-
free strain is

1� n

1þ n
grad div u!� 1� 2n

2ð1þ nÞ rot rot u
!¼ gradεSF þ 1� 2n

1þ n
divbεP

(2)

where n is Poisson's ratio, E is Young's modulus.

3. Solution of the equation of equilibrium in the case of a
fixed cylinder

In order to mimic the conditions of a core-shell nanowire, we
solved the equation of equilibrium assuming a cylindrical sym-
metry. The wire is also considered fixed at both ends and can be
stressed initially in the axial direction (the solution for a free wire is
given in Appendix A). This specific geometry implies the following:
only the radial component u of the dilatation vector differs from
zero (azimuthal and axial components uq ¼ uz ¼ 0). Consequently
eq. (2) has the following form in cylindrical coordinates

1� n

1þ n

�
1
r
dðruÞ
dr

�
¼ dεSF

dr
þ 1� 2n

1þ n

�
dεPrr
dr

þ 1
r

�
ε
p
rr � ε

p
qq

��
(3)

Here the indices “rr” and “qq” denote the radial and the
azimuthal components of the tensors. Applying axial force to the
wire initially and fixing its ends under this stressed state, the so-
lution of the equilibrium equation is

u ¼ 1� n

1þ n

1
r

Zr
Ri

r
�
ε
SF þ 1� 2n

1þ n

�
ε
P
rr þ A

��
dr þ C1r þ

C2
r
� n

C3
E
r

(4)

where

A ¼ 2
Zr
Ri

ε
P
rr
r
dr (5)

C1, C2 and C3 are constants of integration to be determined from
boundary conditions and Ri is any convenient lower limit for the
integral, such as inner radius of a hollow cylinder or Ri ¼ 0 for a
solid cylinder. Eq. (4) has been obtained using trbεP ¼ 0. Since the
wire is fixed at both ends εPzz ¼ 0 and ε

P
rr ¼ �ε

P
qq
. Note that without

any axial initial force, the term �n C3
E r vanishes. Therefore, this term

considers that the displacement is affected by the uniform initial
stress applied.

Knowing the displacement vector, the components of the total
strain tensor in cylindrical coordinates can be determined using
εrr ¼ du=dr, εqq ¼ u=r and εzz ¼ duz=dz [10]. For these we obtain

The components of the stress tensors can then be obtained by
substituting the strain components in eq. (1):

srr ¼ � E
1� n

1
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(7)

The constants of integration can now be determined using the
boundary conditions. For instance, in the case of a solid cylinder
(Ri ¼ 0) with free outer surfaces (srrðRoÞ ¼ 0) the displacement at
the center of the cylinder is equal to zero: uðRiÞ ¼ 0. Thus, it follows
from eq. (4) that

C2 ¼ 0 (8)

By definition C3 is the uniform axial stress applied initially, so

C3 ¼ s0zz (9)

Moreover, since the cylinder is free to expand in the radial di-
rection, the radial component of the stress tensor vanishes at the

εrr ¼ 1þ n

1� n

8><>:� 1

r2

Zr
Ri

r
�
ε
SF þ 1� 2n

1þ n

�
ε
P
rr þ A

��
dr þ ε

SF þ 1� 2n
1þ n

�
ε
P
rr þ A

�9>=>;þ C1 �
C2
r2

� n
C3
E

εqq ¼
1þ n

1� n

1

r2

Zr
Ri

r
�
ε
SF þ 1� 2n

1þ n

�
ε
P
rr þ A

��
dr þ C1 þ

C2
r2

� n
C3
E

εzz ¼ C3=E

(6)
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