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a b s t r a c t

In face-centered-cubic (fcc) metals, the evolution of Shockley partial dislocations under stress is known
to play an important role in plastic deformation. The simulations of the dislocation evolutions, including
dislocation dissociation, nucleation and recombination, under applied stress are presented using a phase
field dislocation dynamics model that incorporates the g surface of various fcc metals. As expected, the
separation of the leading and trailing partials, termed the equilibrium stacking fault width (SFW), is
governed by the details of the g surface and the external loading conditions. Two important critical
stresses, defined as the singular stress and the nucleation stress, are found to determine the stress-
dependent evolution mechanism. As a general rule, the SFW increases with the applied stress and di-
verges when the applied stress exceeds the singular stress. A spontaneous nucleation of partial dislo-
cation loops within the stacking fault (SF) occurs when the applied stress exceeds the nucleation stress.
In particular, a new stress-size-dependent nucleation mechanism is observed in the simulations in the
case where the singular stress is greater than the nucleation stress for a fcc metal: the nesting loop or
nesting dipole can remain in the metastable state without any nucleation even the applied stress is twice
as large as the nucleation stress.

© 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

In fcc metals, slip occurs between the close-packed f111g planes
and along the 〈110〉 direction [1e3]. The dislocation lines and loops
in these slip planes will be energetically more favorable for the
dissociation state consisting of two Shockley partials bounded with
a SF. The SFW is found to be determined by the details of the ma-
terial g surface of the slip plane and affected by the external stress
conditions [4,5]. In general, the stress dependence of the disloca-
tion core structure and the size of the SF play important roles in a
large number of plastic deformation mechanisms, such as twin-
ning, cross-slip, dislocation locking/unlocking, crack tip plasticity,
phase transitions and so on [6e8].

The large size of the SF under stress restricts the methods
available to investigate this problem. In the last several decades, a

number of continuum models have been developed on the basis of
the force balances on the dislocation microstructure or the ener-
getically favored state of dislocation dynamics. In summary, they
can be classified into two types of models, the Volterra dislocation
model and the Peierls-Nabarro type model. In the Volterra model,
the equilibrium SFW is determined by the balance of the Peach-
Koehler force due to the stress field, the elastic repulsive force
between the leading and trailing partial dislocations and the
restoring force arising from the SF. Copley and Kear first derived an
expression for the SFW as a function of the applied stress and
stacking fault energy [9]. Cai et al. derived a concise formula of the
ideal separation of two 30o partials [10]. Byun first considered the
damping force to the glide of partial dislocations in the force bal-
ance equation, researching the angular and stress dependences of
the SFW [11]. A critical stress is predicted by the Volterra model for
producing the infinite SFW, and it increases with increasing
stacking fault energy. In the paper, it is termed the singular stress,
t∞. However, the Volterra model neglects the effects of the dislo-
cation core and the dislocation curvature on the SFW, and most
importantly, the Volterra model constrains the partial dislocations
to glide with the unchangeable Burgers vectors under any stress
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condition, which is not consistent with some atomistic simulations
[12,13].

To predict the SFW and to investigate the core structures of the
partial dislocations under stress, another continuum model for the
energetics and dislocation dynamics has been developed based on
the concept of the Peierls-Nabarro (PN) model [14e16]. For
example, Bulatov and Cai employed the variational Peierls-Nabarro
(VPN) model to investigate the stress effects on the SFW for fcc
metals. They found that the SFW does increase as the applied stress
increases, and moreover, they found that under critical stress, the
perfect screw dislocation would split into two perfect 60o dislo-
cations, preempting the 30o partials [17]. This transformation in-
dicates that dislocation nucleation or combination occurs after the
perfect dislocation splits into two partials. In this paper, the critical
stress to trigger this transformation is defined as the nucleation
stress tc. Another popular method to investigate the dislocation-SF
interaction is the phase field dislocation dynamics (PFDD) model. It
is classified as a PN type model because the PFDD model can be
viewed as a three-dimensional, coarse-grained PN model [18e21].
The difference is that the PN and VPN models investigate the
dislocation dissociation by setting one perfect dislocation in an
infinite real space, but the PFDD establishes a dislocation dipole or a
dislocation loop in the simulation box to satisfy the periodic
boundary condition. Shen and Wang first reproduced the disloca-
tion dissociation process in the PFDD by directly incorporating g
surface data from ab initio calculations into the crystalline energy
[22]. Hunter et al. employed the PFDD to investigate the depen-
dence of the SFW on the details of the g surface and found that the
equilibrium configurations are not simply proportional to the
intrinsic stacking fault energy (ISFE) but related to the ratio be-
tween the unstable stacking fault energy (USFE) and the ISFE as
well as some other details [23,24]. Beyerlein and Hunter employed
the PFDD to investigate the grain size effects on the partial dislo-
cation slip and dislocation loop behavior [25]. Mianroodi and
Svendsen introduced an atomistically determined PFDD to model
the dislocation dissociation and partial dislocation slip, and they
found that external loading can transform a perfect dislocation
through a series of core reactions into another 60o perfect dislo-
cation [26]. Soon after, Mianroodi et al. compared the results from
their PFDD with molecular statics simulations [27]. In summary,
nearly all PFDD works focus on the dislocation dissociation process
but not the second transformation, and the relation between the
magnitude of the applied stress and the final dislocation energet-
ically favored state is not clear. By identifying the exact physical
meaning of the singular stress t∞ and the nucleation stress tc, the
stress dependence of the dislocation evolution is clarified by our
work.

Section 2 gives the formulation of the PFDD in the context of
geometric linearity and static loading. The relation between the
gradient energy parameter and the size of the dislocation core is
clarified. In Section 3, the generalized stacking fault energy (GSFE)
used in the PFDD is derived from the misfit energy format from the
literature, in which the ISFE is controlled by a dimensionless
parameter. The PFDD predicts the equilibrium SFW in good
agreement with the results from the Volterra and VPN models. In
Section 4, the stress dependence of the dislocation transformation
as a perfect screw dislocation dipole and a dislocation loop is
produced in the simulations. The conclusions follow in Section 5.

The notation rules of continuum mechanics are used [19,28].
Vectors and higher-order tensors are written in bold font; scalars
and components of vectors and tensors are written in italic font.
The rule of tensor calculation follows the Einstein summation
convention, e.g., the dot product of two vectors a and b is
a,b ¼ aibi. The outer product of two vectors is a5b ¼ aibjei5ej.
The colon denotes summation over two sets of indices:

A : B ¼ AijBij. Let sym A :¼ ðA þ ATÞ=2 represent the symmetric
part of A. Additional notation will be introduced as needed.

2. Phase field theory of dislocation dynamics

A brief description of the PFDD incorporating the dislocation
structure of fcc metals is presented here. The PFDD is restricted to
isothermal conditions and quasi-static loading for investigating the
stress dependence on the dislocation core structure. A more
detailed discussion of the PFDD can be found in
Refs. [21,22,26,27,29]. Let u be the displacement, H ¼ Vu the
distortion field, sym E the strain field, and f ¼ ðf1; :::;fnÞ the phase
fields. Following the notation of Mianroodi et al. [27], the total free
energy of the dislocation system is written as a sum of three con-
tributions, i.e.,

jðE;f;VfÞ ¼ jelaðE;fÞ þ jsfeðfÞ þ jgradðVfÞ (1)

where

jelaðE;fÞ ¼
1
2
ðE� ERðfÞÞ : CE : ðE� ERðfÞÞ

jsfeðfÞ ¼ jjhomðERðfÞ;fÞ

jgradðVfÞ ¼ x
X
a

h�
nðaÞ � V

�
fa

i2
The first term of the above equation is the elastic energy, where

ER ¼ sym HR is the residual strain; the distortion field is
HRðfÞ ¼

P
faHa, Ha ¼ ba5na=da; ba is the Burgers vector; na is

the unit normal of the slip plane; and da is the interplanar space of
the two adjacent slip planes. The second term is the GSFE, also
called the crystalline energy or misfit energy, which is commonly
givenwith reference to the material g surface. The third term is the
gradient energy, which is useful to increase the dislocation core
width artificially to increase the numerical stability. The parameter
x is associated with the dislocation core width. It is worth noting
that Mianroodi and Svendsen rewrite the gradient term to fit the
data from the atomistic simulations [26]. Here, the gradient form of
Wang et al. is used in our model [30,31], and the precise magnitude
relation between the gradient parameter x and the dislocation core
size is clarified later.

The elastic balance equilibrium is built on the PFDD as usual by
the quasi-static mechanical equilibrium:

V,T ¼ 0 (2)

with linear elastic stress,

T ¼ vj

vE
¼ CE : ðE� ERÞ (3)

where CE is Young's modulus, a fourth order tensor.
The evolution of the phase fields is governed by the time-

dependent Ginzburg-Landau equation,

vfa

vt
¼ �m0

dj

dfa
¼ m0

�
V,

vj

vVfa
� vj

vfa

�
(4)

wherem0 is the mobility constant. Eq. (2) is subject to stress-based
boundary conditions solved in Fourier space using the Fast Fourier
Transformation, and Eq. (4) is subject to the no-flux periodic
boundary solved in real space using the finite difference method.

To determine relation between the gradient parameter and the
dislocation core width, the one-dimensional (1-D) PFDD and the
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