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a b s t r a c t

An analytical solution, based on stochastic geometry concepts, is presented here for transformations in
which nuclei are located on the interface between second-phase particles and the parent matrix. The
analytical solution aims at the most common situation in which the particles are dispersed within the
matrix with a particle volume fraction less than 0.1 so that particle/particle impingement is small. A
computer simulation was carried out to compare with the analytical solution. This comparison revealed
that in some circumstances the analytical solution may be valid for particle volume fractions well beyond
0.1 when there is a significant amount of impingement. The formalism is valid for particle stimulated
nucleation during recrystallization as well as for phase transformations that nucleate on the interface of a
previously extant phase and the parent matrix. Detailed determination of the bounds within which the
analytical solution is valid is carried out with the help of computer simulation. The reasons for this
extended validity of the analytical solution are discussed in depth.

© 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

In their early but still highly influential work, Johnson-Mehl,
Avrami and Kolmogorov [1e5] treated nucleation and growth
transformations in a formal way. They did not propose specific
physical mechanisms for nucleation and growth. Instead theymade
geometric and kinetic assumptions that described possible nucle-
ation and growth scenarios. In their fundamental work the nucle-
ation sites were uniform randomly located within the parent
matrix. Furthermore, the nucleation could take place either with a
constant nucleation rate or by site saturation in which all nucle-
ation sites saturated early in the transformation, i. e. all nucleated
regions started to grow from the beginning of the transformations.
Moreover, they set the growth velocity to be a constant and the new
phase to have the shape of spheres. The JMAK equation for site-
saturated nucleation will be used later in this paper and is given by

VV ðtÞ ¼ 1� exp
�
� 4p

3
NVG

3t3
�

(1)

where VV is the volume fraction, t is time, G is the velocity and NV is
the number of nuclei per unit of volume.

In practice, many situations arise that differ to a great extent
from JMAK's original assumptions. Perhaps the simpler deviation is
that the velocity might not be a constant during transformation. In
this particular case, JMAK findings can be easily generalized by
introducing a time dependent velocity. In fact, Avrami herself
recognized that deviations from their assumptions could take place
and proposed a generalized form of her equation that is known to
this day as Avrami's equation [6]:

VV ðtÞ ¼ 1� expð�ktnÞ (2)

where k and n are adjustable parameters without the meaning they
had, for example, in Eq. (1). This equation has been widely used to
model many nucleation and growth transformations.

One might say that JMAK work gave birth to two distinct ap-
proaches to formal kinetics. On one hand researchers tried to derive
JMAK-like analytical expressions by making different assumptions
about nucleation and growth. On the other hand researchers have
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taken Eq. (2) as their starting point and developed formal meth-
odologies that are particularly suitable for situations in which
detailed information about nucleation and growth is not available.
Cahn's paper of nucleation on planes and lines [7] might be
considered the first paper of the former approach as he derived
exact mathematical equations to model transformations nucleated
on random planes and lines. There is a large number of papers
based on the latter approach, a comprehensive review can be found
in Liu et al. [8].

Many researches have endeavored to pursue JMAK and Cahn's
path [7,9]. Owing to the recent developments in Stochastic Geom-
etry [10], a significant number of recent papers have been based on
its results. Perhaps the earliest work based on Stochastic Geometry
concepts was that of Sekimoto [11]. He provided an expression for
the n-point correlation functions describing nucleation and growth
in general circumstances. The one-point function is the JMAK
result. Building on Sekimoto's approach [11], Rickman et al. [12]
presented a general treatment of heterogeneous nucleation.

One of the challenges of formal kinetics is modeling nucleation,
particularly, nuclei locationwithin the matrix. One issue is whether
nuclei are correlated or uncorrelated [13,14]. Recently, Rickman and
Barmak [15] obtained a n-point correlation function for the situa-
tions in which correlated and uncorrelated nucleation took place.
Moreover, it is worth mentioning an interesting work that models
phase transformation taking place in a non-Euclidean space [16].

Rios, Villa and coworkers focused mainly on the nuclei distri-
bution in space and derived exact mathematical expressions to
generalize JMAK's to transformations in which nucleation and
growth were significantly different from those originally proposed
by JMAK [17e27].

As one can see, these diverse approaches are not mutually
exclusive and each has significant importance to the theory and
practice of transformations in solids depending on the problem to
be solved.

In this paper, Rios and Villa previously developed methodology
[18e20,23] is applied to the problem of nucleation on the interface
between uniform randomly dispersed particles and the parent
matrix. Such a nucleation may take place in several circumstances,
for instance, in recrystallization one has the so called particle
stimulated nucleation (PSN) [28e31] or in an entirely different case
nucleation may take place on particles that form within the weld
metal [32e34].

In spite of its obvious scientific and technological importance
there are not many computacional [35e37] or analytical [38,39]
models available for nucleation on particles. The models normally
focus on PSN recrystallization and strongly emphasize the texture
resulting fromnucleation on particles. The present analytical model
follows a different path. We use a JMAK-like approach making no
specific assumptions about the physical mechanism of nucleation
and growth nor about the material. Instead, one provides a
phenomenological description of nucleation of new regions on the
particles and their subsequent growth. A computer simulation
complements the analytical model and follows the same
phenomenological approach.

Our analytical model for nucleation at the particle/matrix
interface model is based on stochastic geometry. Although exact,
the mathematical model makes some assumptions that limit its
validity. Therefore, the computer simulation helped to establish
withinwhich bounds the present equationmay be safely employed.

Therefore, the main objective of this paper is to present an
analytical expression that can be used to model nucleation on
particle/matrix interfaces specially when particle volume fraction
falls within reasonable values, say less than 0.1. A computer simu-
lation generates the microstructures and is compared with the
analytical results. Under certain conditions the present formulation

can also be used for high particle volume fractions, above 0.1. We
fully discuss this point in this paper.

2. Model description

Earlier papers by Rios and Villa [18e20] as well as stochastic
geometry books [10,40] contain the necessary mathematical
background for the mathematical derivation. For the reader's con-
venience preliminary definitions and basic stochastic geometry
concepts are included in the “Supplementary Material” of this
paper.

The derivation starts by considering F the underlying homo-
geneous Poisson point process with intensity l. Next one defines
Z0 ¼ Z0ðtÞ to be the typical grain at time t. Z0ðtÞ is defined to be the
transformed region at time t that originates from a birth and
growth process on the surface of the ball (i. e. the spherical parti-
cles) BRð0Þ; namely, we assume site saturation and Poissonian ho-
mogenous nucleation process on the surface of the ball with mean
number of nuclei per ball (per particle) equal to c>0, while the
grain associated with each nucleus is assumed to grow with con-
stant velocity G outside BRð0Þ and zero inside BRð0Þ. In other words
the nucleated region is permitted to grow only within the com-
plement of the ball BRð0Þ (the exterior part of the particle), that is,
BRð0ÞC .

We denote by Qt the transformed region at time t. Then Qt can
be described as a Boolean model driven by a marked Poisson point
process Ft :¼ fXi; ZiðtÞg, with fXig ¼ j (the homogeneous Poisson
point process with intensity l) and typical grain Z0ðtÞ as defined
above:

Qt ¼ ∪ðXi;ZiðtÞÞ2Ft Xi þ ZiðtÞ (3)

The resulting transformed regionQt is stationary for any t >0. It
follows that its volume fraction is given by

VV ðtÞ ¼ ℙ
�
02Qt

�
¼ 1� exp
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(4)

In order to evaluate E½nd½Z0ðtÞ�we consider the auxiliar birth and
growth process, say Xt, defined in the same way as Z0 with the only
difference that here the grains are free to grow also inside the
particle BRð0Þ. So, let us denote by FS the Poissonian nucleation
process on the sphere with mean number of nuclei per ball equal to
c>0; then its intensity, say lS, is given by (See also [20]).

lSðxÞ ¼
c

4pR2
dvBRð0ÞðxÞ (5)

where dvBRð0ÞðxÞ is the usual Dirac-delta function on the surface of
BRð0Þ, vBRð0Þ. The transformed region Xt at time t is given by

Xt ¼ ∪Xi2FS
Xi þ BGtð0Þ (6)

Of course Xt is not stationary (since the nucleation takes place
only on the sphere); therefore its mean volume density, say VV ;X, is
space and time dependent. Since fXtgt is a birth and growth pro-
cess driven by a Poisson point process as nucleation process, it is
well known that

VV ;Xðt; xÞ ¼ 1� e�VE;Xðt;xÞ (7)

where we denoted by VE;Xðt; xÞ the mean extended volume density
of Xt at point x. A well known theorem [41] states that VE;Xðt; xÞ is
equal to the intensity measure (absolute number of nuclei), LS, of
the nuclei located within the causal cone [9,23], Cðt; xÞ, at time t
associated to the point x, where LSðdyÞ ¼ lSðyÞdy is the intensity
measure of the nucleation process FS. It can be seen that
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