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a b s t r a c t

The intrinsic stacking fault energy (ISFE) g is a material parameter fundamental to the discussion of
plastic deformation mechanisms in metals. Here, we scrutinize the temperature dependence of the ISFE
of Au through accurate first-principles derived Helmholtz free energies employing both the super cell
approach and the axial Ising model (AIM). A significant decrease of the ISFE with temperature, �ð36e39Þ
% from 0 to 890 K depending on the treatment of thermal expansion, is revealed, which matches the
estimate based on the experimental temperature coefficient dg=dT closely. We make evident that this
decrease predominantly originates from the excess vibrational entropy at the stacking fault layer,
although the contribution arising from the static lattice expansion compensates it by approximately 60%.
Electronic excitations are found to be of minor importance for the ISFE change with temperature. We
show that the Debye model in combination with the AIM captures the correct sign but significantly
underestimates the magnitude of the vibrational contribution to gðTÞ. The hexagonal close-packed (hcp)
and double hcp structures are established as metastable phases of Au. Our results demonstrate that
quantitative agreement with experiments can be obtained if all relevant temperature-induced excita-
tions are considered in first-principles modeling and that the temperature dependence of the ISFE is
substantial enough to be taken into account in crystal plasticity modeling.

© 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Crystal plasticity in materials with face-centered cubic (fcc)
structure is overwhelmingly a result of the translation of disloca-
tions, twinning, and cross-slip. Because of the significance of the
intrinsic stacking fault energy (ISFE) in connection to the me-
chanical response, a considerable amount of research has been
devoted to themeasurement of this parameter (for an overview, see
Refs. [1e3]). In spite of these efforts, the fundamental under-
standing of the physics of the ISFE in relation to the effects of
alloying additions and temperature is far from satisfactory, which
limits capturing and predicting the deformation mechanisms in
close-packed elements and alloys.

Of necessity, an intrinsic stacking fault (ISF) in a fcc crystal is
created by splitting a perfect dislocation into two Shockley partial
dislocations. The energy cost of this process is roughly proportional
to the ISFE g and an interaction term between the partials that

balances the energy gain due to the splitting [4]. Like other planar
fault energies, the ISFE is an intrinsic material property that may
depend on temperature. For single-component systems, the tem-
perature coefficient is simply related to the excess entropy of the
stacking fault (SF) DS [2,5],

dg ¼ �DS
A

dT ; (1)

where A is the SF area. On thermodynamic grounds, one expects a
positive excess entropy indicating that the ISFE will lower with
temperature [2]. The available experimental values of dg=dT for fcc
transition metal and noble elements, often obtained through direct
observation of the size variation of the Shockley partials bounding
the ISF, has generally affirmed a negative temperature coefficient
[1e3]. A known exception is the increase of g with T for the high-
temperature ferromagnetic fcc phase of Co, a result that was
rationalized in terms of an increasing stability of the fcc phase over
the hcp phase above the hcp to fcc allotropic transition in Co at
695 K [3].

The complexity of thermodynamics at planar faults rises in the
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presence of vacancies and for alloys, where, e.g., the segregation of
vacancies, interstitial and substitutional components, and clus-
tering may occur [to account for such phenomena, terms contain-
ing the chemical potential enter Eq. (1) [2,5]]. In single-component
systems, it is expected that for an equilibrium concentration of
weakly segregating thermal vacancies (i.e., no significant vacancy
excess at the fault) the entropy term would still dominate the
temperature dependence [2]. In alloys, the aforementioned phe-
nomena may lead to coefficients dg=dT with positive or negative
sign depending on their type and extent, and the magnitude of the
excess entropy associated with the ISF. Indeed, experimental values
of dg=dT vary considerably from one alloy system to another and
show both signs [1,2].

With the advent of density-functional theory (DFT), first-
principles computations of the ISFE at 0 K have become feasible.
Because ISFEs are typically very small quantities (10e300 mJ/m2)
[6,7], such calculations represent a challenge to methodology and
numerical precision rather than being routine. Observed discrep-
ancies between experimentally and theoretically determined ISFEs
for unary systems, on the one hand, have been attributed to both
temperature and impurities, whereas, on the other hand, experi-
mental estimates of the ISFE and its change with temperature are
often less reliable due to various difficulties encountered in practice
[1,3]. Thus, it is expected that careful theoretical studies of the ISFE
at finite temperature could not only reconcile this discrepancy, at
least in parts, but also provide an alternative route to access its
variation with temperature, assuming an accurate prediction of the
thermodynamic properties.

The aim of this work is to use first-principles based modeling of
the Helmholtz free energy to rigorously study the ISFE of fcc Au at
finite temperature beyond the quasistatic approximation,
employing both the super cell approach and the axial Ising model
(AIM), and to shed light on the relative importance of the various
thermally induced degrees of freedom. We chose Au since it is not
only a prominent example of a system with low ISFE at ambient
conditions, similar to the isoelectronic Cu and Ag, but it has also
attracted recent attention in connection to the formation and
electronic properties of SF tetrahedra in Au nanocrystals [8,9].

Before investigating and analyzing the temperature effect on the
ISFE of Au in detail (Secs. 4.3 and 4.4), we establish themetastability
of hcp and dhcp Au (Sec. 4.1), which is a prerequisite to determine
their vibrational free energy through the AIM, and briefly compare
our 0 K results for g to available literature data (Sec. 4.2).

2. Theory and methodology

2.1. Intrinsic stacking fault energy

We employed both the AIM [10] and the super cell approach to
study the temperature dependence of the ideal ISFE g of fcc Au. The
ISFs were modeled as coherently embedded layers in the fcc matrix
and assumed to be infinitely extended. A typically small and posi-
tive elastic strain energy contribution to the ISFE [11,12], which
arises from partial dislocations at the SF boundaries, was neglected,
but its magnitude at 0 K is estimated in Sec. 4.2.

The AIM draws upon a systematic parameterization of the total
energy of polytypes with different stacking sequences in in-
teractions between close-packed layers. It enables the derivation of
SF energies in a computationally inexpensive way assuming that
the interaction energies decay quickly with distance along the
stacking axis. Here, interaction energies up to the next-nearest
neighbor layer were included in the calculations. Considering
only the interaction between the nearest neighbor atomic planes,
the ISFE can be approximated by the axial nearest neighbor Ising
(ANNI) model [10,13]

gANNI ¼
2
�
Fhcp � Ffcc

�
A

; (2)

where Fhcp and Ffcc are the Helmholtz free energies (per atom) of
the hcp and fcc structures, respectively. A denotes the area per atom
in a close-packed layer,

A ¼
ffiffiffi
3

p

4
a2fcc ¼

ffiffiffi
3

p

2

�
að111Þfcc

�2
; (3)

afcc being the lattice parameter of the fcc structure and að111Þfcc the
length of the hexagon that defines the unit cell in a fcc ð111Þ close-
packed layer. If additionally the interactions between next-nearest
neighbor close-packed planes are taken into account, the ISFE is
approximately given by the axial next-nearest neighbor Ising
(ANNNI) model [10,13]

gANNNI ¼
�
Fhcp þ 2Fdhcp � 3Ffcc

�
A

: (4)

Fdhcp denotes the free energy of the dhcp structure (per atom). In
the previous equations, Fhcp and Fdhcp do not correspond to en-
ergies of equilibrium states rather than to those derived for con-
strained in-plane lattice parameters, ahcp ¼ adhcp ¼ að111Þfcc by virtue
of coherency with the fcc matrix, and relaxed out-of-plane lattice
parameter cðdÞhcp aligned parallel to the stacking axis.

By modeling an ISF though a super cell, the excess energy of the
fault relative to the pristine fcc host yields the ISFE and may be
obtained from

gSC ¼ Fmfault � m
nF

n
fcc

A
: (5)

here, Fmfault and Fnfcc are the free energies of an m-layers super cell
containing the SF and an n-layers defect-free fcc super cell,
respectively. The inter layer distances in the cell with fault are
allowed to relax, subject to the constrained in-plane lattice
parameter afault ¼ að111Þfcc . Since for a single ISF per super cell we
havem ¼ 3i� 1, i>1, we may choose for the fcc super cell n ¼ mþ
1 or n ¼ m� 2 to ensure cancellation of numerical noise, which
may arise due to employing different cell sizes.

2.2. Helmholtz free energy

The primary goal is to compute the Helmholtz free energy for
structures employed in the SF calculations. In the quasiharmonic
approximation (QHA), a free-energy function F for nonmagnetic
crystals may be defined as [14]

F
��

dij
�
; T

� ¼ Esta
��

dij
��þ DFele

��
dij

�
; T

�þ Fvib
��

dij
�
; T

�
: (6)

here, Esta is the static electronic energy at 0 K, DFele is the electronic
contribution due to thermal excitations (DFele≡Fele � Esta), and Fvib
is the contribution due to lattice vibrations. The fdijg is the set of
interatomic distances between atoms i and j in the unit cell that are
variable and independent parameters as a function of temperature,
i.e., lattice parameters and interlayer distances.

The Helmholtz free energy of the equilibrium state at temper-
ature T and the equilibrium distances fd0ijðTÞg may be obtained by
minimizing Fðfdijg; TÞ, viz.
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