
Full length article

Topological changes in coarsening networks

Dana Z€ollner a, *, Paulo Rangel Rios b

a Institut für Strukturphysik, Technische Universit€at Dresden, Haeckelstr. 3, 01069, Dresden, Germany
b Escola de Engenharia Industrial Metalúrgica, Universidade Federal Fluminense, Av. dos Trabalhadores, 420, Volta Redonda, RJ, 27255-125, Brazil

a r t i c l e i n f o

Article history:
Received 31 January 2017
Received in revised form
14 March 2017
Accepted 17 March 2017
Available online 24 March 2017

Keywords:
Grain growth
Cellular network
Statistical self-similarity
Topological transitions
Monte Carlo simulation

a b s t r a c t

Curvature driven grain growth proceeds by the motion of curved grain boundaries in polycrystals leading
to a decrease in the total interfacial free energy. However, grain growth cannot occur without the so-
called topological transitions. Indeed, it is a mathematical impossibility that a decrease in the number
of grains per unit volume may take place without the topological transition that corresponds to the grain
disappearance. Nonetheless, despite their importance, no previous work has studied the topological
transitions in detail that take place during the transient as well as the self-similar state of coarsening. In
the present work, the three classical topological changes are tracked during 2-d grain growth simulated
by a Monte Carlo method. It is shown and discussed how topological transitions reach a self-similar state
together with the grain size and the number of edges (faces) per grain distribution.

© 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The geometric topology of polygonal networks in materials like
grain and foam microstructures has been a topic of scientific in-
terest for decadesdnot only for mathematicians but also for ma-
terials scientists. Such networks consist in two dimensions of edges
and vertices. As a result, a certain number of edges and likewise
vertices surround a polygonal areada cell or a grain.

Particularly, the question of coarsening of such systems is of
great importance since themechanical properties of mostmaterials
depend on their microstructures. Ideal coarsening is a process,
where it is assumed that all edges are characterized by the same
energy per unit length and by the same mobility. Three edges meet
in a vertex, the dihedral angles must be 120� and so the edges
connecting two neighboring vertices are usually curved. From a
thermodynamic point of view, this state is not in equilibrium. The
curved edges have an excess energy that the network reduces
during coarsening. Consequently, the boundaries move to the
center of curvature reducing the edge length, but at the same time
opening a contest between the motion of the edges and the equi-
librium dihedral angles. This process results in a coarsening of the
network, where small (convex) cells shrink and at some point,

disappear, while large (concave) cells grow increasing the average
cell size.

Awell-investigated example for ideal coarsening is normal grain
growth of polycrystalline metals or alloys on the micrometer scale,
which has been explored by experimental, computational, and
theoretical means (compare, e.g., [1e7]). It is known that in case of
normal grain growth the average linear grain size of an ensemble of
polycrystalline grains fulfills a square-root law regarding the
coarsening time in two as well as in three dimensions. At the same
time, the network is in what is called a quasi-stationary state
showing statistical self-similarity. The latter can be analyzed for
instance by observations of the scaled grain or cell size distribution
as well as the relation between number of edges and relative grain
size. Both analyses yield time-independent results, and self-similar
scaling is a well-accepted property for ideal coarsening.

Specifically, topological considerations of such polygonal net-
works have been of immense significance, e.g., for mean-field
theories of grain growth. In his classical theory of grain growth,
Hillert [8] originally neglected any topology-size-relationship. The
resulting grain size distribution function has never been observed,
neither in experiments nor in computer simulations. However,
taking such relations between neighboring cells into account has
advanced the analytic theories such that nowadays the resulting
size distribution functions are self-similar, show volume conser-
vation, and are suitable for fitting measured experimental and
simulated size distributions (e.g., [9e11]).
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Nevertheless, a number of questions still remains to be
answereddeven today. One of those is the question regarding the
occurrence of topological changes in the coarsening networks. As
we have seen above during coarsening the edges move and small
grains shrink and disappear. These are, of course, not detached
events, but happen within the network, where a moving edge is
always dragging its vertices along and therewith also the connected
edges in the vertices making it a complex, competing motion.
Nevertheless, from a purely topological point of view the number of
events changing the local topology is very limited:

1. It is possible to change the local topology, while keeping the
total number of edges and vertices in the network constant. This
is done by a neighbor switching event, T1, as shown in Fig. 1a,
where the edge between two neighboring cells vanishes dis-
connecting them but making at the same time a new connection
between two further neighboring cells.

2. During an edge disappearance event, T2, a cell is losing one edge
and the two adjacent vertices merge, which can be seen in
Fig. 1b. As a result, in that moment, where the boundary is
annihilated, four boundaries meet in a vertex, which is highly
unstable, and hence the local topology has to readjust.

3. Finally, a whole grain can vanish during a grain disappearance
event, T3, merging here also the connected vertices. This event
usually happens with three-sided cells removing three edges
and two vertices as in Fig. 1c, but could possibly also occur for
small four-sided grains resulting just for a moment in an un-
stable quadruple junction.

All in all, we can see in Fig. 1 that such topological events are
often accompanied by a reduction in the number of edges and
neighboring cells, respectivelyda point that we will discuss below.

Of course, the general topic of topological changes in cellular
networks has been in the center of attention of materials scientist
for many years:

Already more than 40 years ago, Rhines et al. [12] pointed out
that “Topological transformations simply happen when the
Euclidean dimensions of some part of the system chance to pass
through zero. This occurs when a grain goes to zero volume and
when a triangular face goes to zero area, or is created. Such events
can occur only as grain boundary sweeps through the system.”

In more recent times, Wakai et al. [13] analyzed topological
transformations of grains in 3D normal grain growth using the
Surface Evolver method. They focused on grain switching and grain

disappearance events and found that individual grains increase and
also decrease their number of faces many times as the grains grow
or shrink, where the reduction in the number of faces happens
more often than the generation of new faces.

In a more recent paper, Sprague et al. [14] distinguished for two-
dimensional grain growth three types of topological events: loss of
the simplest grains (type I event), grains gaining one edge (type II
event), and grains losing an edge (type III event). These are clearly
different from our above defined events T1 toT3. Nevertheless, they
already found a constant ratio of the number fraction of dis-
appearing grains to the area fraction swept by the grain boundary
as well as a constant ratio of boundary-switching events per grain
disappearance.

In addition, the topic of topological changes is often a very
important focal point of investigations of coarsening using the
vertex model. For example, Weygand et al. [15] used vertex models
for the simulation of grain growth and investigated the problem of
the implementation of topological transitions in the model, which
is based on the introduction of virtual vertices. Also Barrales-Mora
et al. [16] used the vertex model commenting on the imple-
mentation of topological changes in their model. But they mention
in particular that in their case the “rate of change … is less affected
by the change of the topological class than by the change of the
metrics of the grains”.

In the following, we analyze the three types of topological
changes occurring in two-dimensional polygonal networks. To that
aim, Potts model simulations of ideal coarsening have been carried
out for different initial networks and at different coarsening stages.
We will follow the temporal development of the topological
changes as well as the trajectories of individual cells.

2. Topological events during self-similar coarsening

In the present work, we have employed the lattice-based Monte
Carlo Potts model for ideal coarsening assuming that there are only
two parameters characterizing the materialdnamely the param-
eter g in the Hamiltonian of the simulation algorithm measuring
the energy interaction of a lattice point with all neighboring lattice
points, which is related to the specific edge energy of the network,
and the parameter m in the transition probability describing the
specific edge mobility of the network. The vertices are considered
to be part of the edges and have, therefore, no direct influence
themselves. For a detailed description of the Potts model please
compare, e.g., [17,18].

Fig. 1. Three types of topological changes occurring in two-dimensional networks: a e neighbor switching events T1; b e edge disappearance events T2; c e grain disappearance
events T3.
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