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a b s t r a c t

We introduce a microstructure dataset focusing on complex, hierarchical structures found in a single
Ultrahigh carbon steel under a range of heat treatments. Applying image representations from
contemporary computer vision research to these microstructures, we discuss how both supervised and
unsupervised machine learning techniques can be used to yield insight into microstructural trends and
their relationship to processing conditions. We evaluate and compare keypoint-based and convolutional
neural network representations by classifying microstructures according to their primary micro-
constituent, and by classifying a subset of the microstructures according to the annealing conditions that
generated them. Using t-SNE, a nonlinear dimensionality reduction and visualization technique, we
demonstrate graphical methods of exploring microstructure and processing datasets, and for under-
standing and interpreting high-dimensional microstructure representations.

© 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Comprised of the structures that arise from processing and
mediate properties, microstructure is a core focus of the discipline
of materials science. Microstructural information is most often
conveyed via images obtained through various microscopy tech-
niques (i.e. micrographs), sometimes supplemented by other
structural and compositional probes. Traditionally, microstructural
images have been evaluated by human experts, both to interpret
the micrographs themselves and to connect them to processing
conditions and property outcomes. However, recent research in
microstructure data science has begun to explore applications of
contemporary computer vision to construct microstructure repre-
sentations suitable for use in machine learning and microstructure
analytics tasks [1e4]. For example [3], compare several image
texture representations and find that off-the-shelf convolutional
neural network (CNN) features can be applied to microstructure
analytics tasks (e.g. classification) without fine-tuning any of the
CNN parameters. Likewise, Lubbers et al. [4] apply bilinear CNN
representations [5e7] to synthetic lamellar structures, and relate
this representation to the generative microstructure model

parameters (i.e. lamellar spacing and orientation and noise). While
promising proofs of principle, these studies used comparatively
simple and well-parameterized microstructures. To move towards
quantitative application of generic computer vision techniques, we
require real-world, technologically-relevant microstructure sys-
tems exhibiting the complex, hierarchical structures that challenge
conventional microstructure segmentation and quantification.

To this end, we introduce the CMU-UHCS (Carnegie Mellon
University Ultrahigh Carbon Steel) dataset [8,9], based on the work
of Hecht et al. [10,11]. This dataset consists of 961 scanning electron
microscopy (SEM) micrographs of Ultrahigh Carbon Steel (UHCS)
subjected to a variety of heat treatments and taken at several
different magnifications. The dataset spans several complex and
hierarchical microconstituents typically found in UHCS and other
technologically relevant alloy systems, offering a compelling real-
world microstructure data science challenge.

UHCS (steels with 1e2.1 wt% carbon) are intermediate in con-
tent to high carbon steel (0.6e1 wt% C) and cast iron (2.1e4.3 wt%
C). Due to their high carbon content relative to conventional steels,
a characteristic microstructure feature of these alloys is pro-
eutectoid cementite (Fe3C), typically forming a network associated
with the grain boundaries of the high-temperature austenite phase.
The hard, brittle carbides help lend UHCS its well-known high
strength and wear resistance, but highly-connected intergranular
proeutectoid cementite networks can be detrimental to toughness
and ductility by providing extended pathways for crack
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propagation [12,13]. Recent UHCS research has focused on miti-
gating this weakness by optimizing the network microstructure
through various heat treatments [14] and addition of minor alloy-
ing elements [15,16]. Hecht et al. recently developed a quantitative
measure of the proeutectoid cementite network connectivity,
relating this to annealing schedules and toughness measurements
[10]. In a similar study, Hecht et al. explored the effect of annealing
conditions on spheroidite morphology [11]. The present UHCS
microstructure dataset is built on the characterization efforts for
these two UHCS studies.

In this study, we use the UHCS dataset to compare state-of-the-
art CNN-based image texture representations with the classic bag
of visual words (BoW) representation [17,18]. As microstructure
representations, the BoW has the theoretical advantage of strong
explicit scale and rotation invariance, while CNNs notoriously
outperform BoW on typical natural image recognition tasks (e.g.
facial recognition, object detection and identification, scene clas-
sification). We evaluate each image representation using both su-
pervised and unsupervised learning methods, and demonstrate
how these techniques can be used together for exploratory
microstructure analysis. Specifically, we used a Support Vector
Machine (SVM) [19] approach to classify microstructures both by
primary microconstituent and annealing condition. We comple-
ment this understanding by applying the unsupervised
dimensionality-reduction technique t-SNE (t-distributed Stochastic
Neighbor Embedding) [20] to visualize the high-dimensional dis-
tributions of each microstructure representation, relating this
structure to available annealing schedule and imaging metadata.

Our primary contributions in this report are:

� A real-world dataset of complex, hierarchical microstructures
annotated with microstructure constituent metadata, as well as
partial imaging and processing metadata, such as heat treat-
ment, cooling procedure, and magnification [8,9].

� Evaluation of several competitive computer vision techniques,
with discussion of their relative strengths and weaknesses for a
range of real-world microstructure analytics tasks.

� Exploration of microstructure data visualization techniques for
inferring processing e microstructure e properties relation-
ships for realistic complex, hierarchical microstructure systems.

� Considerations of microstructure data bias and quality that will
be essential to developing reliable data-driven microstructure
models and standards.

2. Methods

2.1. UHCS dataset

The UHCS dataset [8,9] consists of 961 SEM micrographs of
commercial UHCS subjected to a range of heat treatments by Hecht
et al. [10,11]. These micrographs span a wide range of magnifica-
tions, and include both secondary electron (SE) and back-scattered
electron (BSE) images. 598 micrographs also have annealing
schedule metadata: annealing time, temperature, and cooling
method, as described in more detail in Ref. [8]. All 961 images are
labeled with their primary microstructure constituents as illus-
trated in Fig. 1. Most of the micrographs focus on the spheroidite
morphology (Fig. 1(a)), the proeutectoid cementite network
(Fig. 1(b)), and pearlite (Fig. 1(c)). A smaller number of micrographs
contain two primary microconstituents, such as pearlite containing
spheroidite (Fig. 1(d)), Widmanst€atten cementite (Fig. 1(e)), and
martensite (Fig.1(f)). Table 1 shows the distribution of each of these
primary microconstituent labels. We used the full set of 961 labeled
645 � 484 pixel micrographs to generate the data visualizations in

Section 3.2.
For the primary microconstituent classification experiments, we

considered only a subset of these labeled micrographs: 200
randomly selected micrographs each from the spheroidized
cementite, proeutectoid cementite network, and pearlite/
pearlite þ spheroidite classes, for a total of 600 images. We also
consider an expanded dataset constructed by cropping four
224 � 224 sub-images from the center of each micrograph in the
original dataset, so that the expanded dataset consists of 2400
images. The single red and four yellow frames in Fig. 1(a) indicate
the image regions used for microstructure feature extraction in the
full-sized and cropped image sets, respectively.

The annealing schedule classification task was limited to the
micrographs collected to study the spheroidite morphology. The
dataset contains spheroidite micrographs resulting from 23 distinct
annealing schedules. Within this subset of micrographs, we limit
the classification dataset to the 13 annealing conditions with at
least 15 micrographs. Where more than 15 micrographs with a
given annealing condition are available, we randomly select 15
micrographs to obtain a balanced classification dataset. The
resulting annealing condition classification datasets consist of 195
full-sized micrographs and 780 cropped micrographs.

2.2. Image representations

In this microstructure representation study, we explore and
compare two computer vision approaches for computing generic
image representations: Mid-level image patch descriptors [18,21]
and convolutional neural network (CNN) representations
[22e24].1 The mid-level features approach is attractive due to its
relatively strong invariance to image scale and orientation; its focus
on identifying and characterizing individual features is also intui-
tive to the materials scientist. However, CNN representations are
generally regarded as richer, more hierarchical, and more effective
than mid-level image features, even when transferring CNN pa-
rameterizations from one task to another (in this case completely
unrelated) task [26,27]. These advantages stem from the structure
of modern CNNs as used in computer vision: deep CNNs are con-
structed as a hierarchical series of convolution filterbanks that
extract image features, interspersed with local aggregation (pool-
ing) functions that derive high-level image features by composing
lower-level features [22].

2.2.1. Mid-level image features
The baseline feature extractionmethod in this study is the bag of

visual words (BoW) method, which represents an image as a dis-
tribution of local image descriptors (i.e. visual features). As previ-
ously reported in detail [1,2], we applied both the Difference of
Gaussians [28] and the Harris-LaPlace [29] interest point detectors
to select distinctive image regions with characteristic scales and
orientations. We then used oriented SIFT descriptors [28] to char-
acterize the visual appearance of each interest point, and k-means
clustering [30] to quantize the SIFT descriptors into a visual dic-
tionary with 100 (BoW100) visual words (i.e. SIFT cluster centers).
Each image is then represented by its microstructural fingerprint: A
normalized histogram measuring the occurrence frequency of each
visual word within the image. BoW representations can be
compared with various similarity metrics for discrete probability
distributions, such as the Hellinger and c2 kernels [18]. Presently,
we use the c2 kernel, which for two normalized m-dimensional

1 In addition to these topical review papers, Szeliski's Computer Vision [25] is an
excellent introductory text covering a broad selection of foundational topics and
concepts in computer vision.
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