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Coarsening plays a pivotal role in materials engineering, but our understanding of the dynamics of
coarsening in morphologically complex systems is still limited. In this paper, we examine the correlations
between the interfacial velocity and interfacial morphologies, and then predict the evolution of mean
curvature based on the correlations. Three simulated structures with varying volume fractions, two
bicontinuous and one nonbicontinuous, are generated using the Cahn-Hilliard equation. We find general
correlations between interfacial velocity and mean curvature, as well as between interfacial velocity and
the surface Laplacian of the mean curvature. Furthermore, we find that the probability of finding a patch
of interface with a given normal velocity and the same local principal curvatures is described well by a
Gaussian distribution, independent of the principal curvature values and the volume fractions of the
structures. We also find that average interfacial velocity is described by a polynomial of the mean cur-
vature and the net curvature. Based on this finding, we develop a semi-analytical approach to predicting
the rate of change of the mean curvature, which determines the morphological evolution of complex
microstructures.

© 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Coarsening is a phenomenon that is widely observed during
thermal processing of many materials. It occurs during material
processing of metallic alloys [1—4], polymers [5—8], bicontinuous
nanoporous gold [9,10] and semiconductors [11—13]. Following
either spinodal decomposition or nucleation and growth, a two-
phase system undergoes coarsening after the concentration of
each phase approaches its equilibrium value. During this
capillarity-driven phenomenon, solute diffuses from regions with
high chemical potential to regions with low chemical potential as a
result of the Gibbs-Thomson effect, which relates the chemical
potentials to interfacial curvature. This diffusion process, in
response to a thermodynamic driving force, reduces the total
interfacial area within the microstructure to minimize the excess
energy associated with interfaces.

Understanding the mechanisms of coarsening is important since
the microstructure can undergo substantial changes in morphology
and topology during coarsening. These changes in microstructure,
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in turn, directly influence the properties of the material after pro-
cessing and during its utilization. For example, in the case of pre-
cipitation hardening of metallic alloys, the precipitates that
nucleate in the solid solution undergo coarsening during the aging
process. While the average size of the precipitates increases during
coarsening, the number density of precipitates decreases, which
enables dislocations to migrate more freely in the solid. As coars-
ening continues, the yield strength of the alloy decreases, resulting
from the microstructural evolution [14]. In the case of nickel/yttria-
stabilized zirconia (Ni/YSZ) cermet, which is a commonly used
anode material in solid oxide fuel cells (SOFCs), the coarsening of Ni
particles in the anode reduces the density of triple-phase bound-
aries, thus significantly diminishing the electrochemically active
regions and degrading the electrochemical performance of SOFCs
over time [15—17]. The mechanical properties of nanoporous gold
structures can be linked to the topology of the bicontinuous
structure that can evolve during coarsening [18,19].

Coarsening of polydispersed spherical precipitates has been
studied extensively in the past [20—22]. In 1960s, Lifshitz and
Slyozov [23], and Wagner [24] (LSW) determined analytically the
growth rate of a particle, dR/dt, as a function of radius, R. Using the
growth rate, they also determined the time-independent particle
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size distribution that is scaled by a time-dependent characteristic
length scale of the system. The resulting LSW theory predicts
(R) ~ t1/3. Even though the LSW theory is derived in the limit of
zero volume fraction of the particle phase, in which the diffusion
fields between particles do not overlap, it provides valuable in-
sights into the self-similar evolution of a system of particles un-
dergoing coarsening. Furthermore, this classical theory has served
as a foundation for the subsequent development of more general
theories that advanced the understanding of the dynamics of
coarsening in materials with polydispersed precipitates (see
comprehensive reviews [25,26] and a book [27] for more
information).

In contrast, the understanding of the dynamics of coarsening in
materials with complex microstructures is still at an early stage.
Deriving a theory of coarsening based solely on an analytical
approach in these materials is extremely challenging because, un-
like the simple spherical geometry that can be assumed in many
theories of precipitate coarsening, the complex morphology and
topology of the microstructure poses difficulties in solving the free-
boundary problem describing the interfacial motion resulting from
diffusion. For example, the coarsening of dendrites [28—30] has
been studied by approximating the dendrite arms as a collection of
cylinders [30] or cylinders with spherical caps at the end [29,31].
However, such simple geometries do not fully capture the complex
structures of dendrites, and therefore experimental and computa-
tional approaches are needed in elucidating the kinetics of inter-
facial motion during coarsening.

The ultimate goal of this work is to develop the theory of
coarsening of complex microstructures. This requires a simplifica-
tion of the dynamics because the complex morphology and topol-
ogy of the structure introduces significant complications.
Therefore, we begin with a simplified mathematical description of
the process, based solely on the thermodynamic driving force from
interfacial free energy and excluding other effects such as elastic
stress and unequal mobilities in different phases. Such an approach
gives important insights into the dynamics of coarsening processes
in these morphologically complex systems.

In our previous effort, we examined the morphological evolu-
tion of a bicontinuous structure undergoing coarsening via non-
conserved dynamics [32]. We observed that, while the majority of
interfaces undergo flattening, some regions of interfaces become
more highly curved as they approach pinching (a topological sin-
gularity). Furthermore, while the interfacial velocity is determined
by the local mean curvature in nonconserved dynamics, the evo-
lution of mean curvature is dependent on both the local curvature
and the curvatures of the nearby interfaces since they can interact
diffusionally.

Building upon this previous work, we here examine the coars-
ening of three complex structures following spinodal decomposi-
tion, in which the evolution of interfaces is due to the interfacial-
energy-driven bulk diffusion. We first elucidate the dynamics of
coarsening by examining the correlation between interfacial ve-
locity and static interfacial properties, namely the mean curvature
and the surface Laplacian of the mean curvature. In situations
where the interfacial motion is dictated solely by the local geom-
etry of the surface, such as grain growth [33,34] and antiphase
domain boundary motion [35], the exact relationship between the
interfacial velocity and local curvatures can be determined. How-
ever, such a relationship cannot be established in a material system
undergoing coarsening via bulk diffusion due to the long-range
diffusional interactions. Therefore, we examine the statistical cor-
relation (not a functional relationship) between the interfacial ve-
locity and the mean curvature, as well as the correlation between
the interfacial velocity and the surface Laplacian of the mean cur-
vature. In addition, we explore the distribution of velocities of

interfaces with given principal curvatures. Based on the informa-
tion gathered from analysis of the interfacial velocity during
coarsening, we develop a semi-analytical approach to predicting
the rate of change of the mean curvature, which is then verified
against the simulation results.

2. Computational methods
2.1. Preparation of microstructural data

The phase-field method is a computational technique for
simulating phase transformations [36—38]. The phase-field method
is based on the diffuse-interface theory, where the value of an order
parameter, ¢, smoothly varies across an interfacial region with a
finite thickness from a value representing one phase to another
value representing a different phase. The diffuse-interface
approach eliminates the need to explicitly track the location of
interfaces since this information is embedded in ¢, which is evolved
based on the governing phase-field equation.

The governing equation employed in our simulation is the Cahn-
Hilliard equation [39,40].
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where L, and e are the mobility and the gradient energy co-
efficients, respectively. While Ly can, in general, have dependence
on ¢ and may vary spatially, we take it to be constant in this work
for simplicity. The bulk free energy, f (¢), is assumed to be a double-
well potential,

f9) = F47(1 — )2 2)

with two minima at ¢ = 0 and ¢ = 1 (the equilibrium values of
the two phases), and the height of the double-well potential is
controlled by a well-height parameter, W. Note that the term
of /o — £2V2¢ is the chemical potential. The simulations are per-
formed with a dimensionless form of the Cahn-Hilliard equation,
where we define the dimensionless variables such that x = X/,
where [ is the scaling length, and t = £/7, where 7 is the associated
time scale and the tilde indicates the dimensional variables. We
select | such that the grid spacings are Ax = Ay =Az=1.0 and 7
such that Ly = Ly7/I2W = 1.0, where L, is the dimensional mobility
coefficient and W is the dimensional well-height parameter. A time
step of At = 0.05 is employed. A computational domain size of
1024 x 1024 x 1024 is chosen to generate sufficient statistics for
accurate analyses of interfacial morphologies. In the phase-field
method, values of ¢2 and W determine the interfacial thickness, 9.
In order to ensure sufficient interfacial resolution, we use ¢2 = 0.2
and W = 0.4 to obtain ¢ = 4.0, which results in the interfacial re-
gion (defined by ¢ in the range 0.1-0.9) being approximately four-
grid-point wide.

In order to examine the influence of overall morphologies on the
dynamics of coarsening, we performed three separate simulations
with different initial conditions that result in different volume
fractions of the phases. The three initial conditions consist of order
parameters with average values ¢; = 0.5, ¢, = 0.4, and ¢3 = 0.3,
each with a random noise of amplitude 0.1. These initial conditions
result in bicontinuous structures with 50:50 and 40:60 volume
fractions of the phases, and a nonbicontinuous structure with
30:70 volume fractions of the phases. Since the Cahn-Hilliard
equation is conserved, the volume fractions of the phases remain
constant throughout their evolution.

The three structures were evolved for a dimensionless
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