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a b s t r a c t

Using molecular dynamics simulations and the capillary fluctuation method, we have calculated the
anisotropic crystal-melt interfacial free energy and stiffness of aluminum in a rapid solidification system
where a temperature gradient is applied to enforce thermal non-equilibrium. To calculate these material
properties, the standard capillary fluctuation method typically used for systems in equilibrium has been
modified to incorporate a second-order Taylor expansion of the interfacial free energy term. The result is
a robust method for calculating interfacial energy, stiffness and anisotropy as a function of temperature
gradient using the fluctuations in the defined interface height. This work includes the calculation of
interface characteristics for temperature gradients ranging from 11 to 34 K/nm. The captured results are
compared to a thermal equilibrium case using the same model and simulation technique with a zero
gradient definition. We define the temperature gradient as the change in temperature over height
perpendicular to the crystal-melt interface. The gradients are applied in MD simulations using defined
thermostat regions on a stable solid-liquid interface initially in thermal equilibrium. The results of this
work show that the interfacial stiffness and free energy for aluminum are dependent on the magnitude
of the temperature gradient, however the anisotropic parameters remain independent of the non-
equilibrium conditions applied in this analysis. The relationships of the interfacial free energy/stiffness
are determined to be linearly related to the thermal gradient, and can be interpolated to find material
characteristics at additional temperature gradients.

© 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The study of rapid solidification through computational ana-
lyses has seen an increase in demand due to the recent advances in
the additive manufacturing industry. These processes apply
extreme temperature gradients to propagate the interface between
the solid and liquid phases of the material to form a new micro-
structure. The extreme environmental impacts on the material
often result in the development of intrinsic defects that contribute
to the degradation of the material strength and limit the applica-
tions of these structural components [1e4]. For standard solidifi-
cation phenomena, multi-scale simulations provide us with a
means to study the formation of these microstructures at an atomic
scale, as well as the progression and impact of these defects

through phase-field and finite element method simulations [5e9].
When these theories are applied to rapid solidification processes,
the assumption of thermal equilibrium may not result in the most
accurate representation of the physical state [10e13]. This paper
focuses on the atomic scale of the rapid solidification of aluminum
through molecular dynamics with the application of the capillary
fluctuation method and an applied thermal gradient that drives the
system out of equilibrium to capture the changes in the interface
characteristics.

The strength of metallic structures formed through solidifica-
tion processes is largely affected by the growth patterns of micro-
structures known as dendrites. These crystalline structures are the
result of a moving solid-liquid interface and are constrained by the
fluctuating heating and cooling temperatures [7,11,14e17]. For
standard solidification processes, such as welding, the geometric
growth patterns of these dendrites have been shown to be
dependent primarily on the individual tip velocity and interfacial
stiffness for the material [5,18]. These patterns are typically studied
through phase-field simulations using an equilibrium-based Gibbs-
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Thomson condition, often supplemented with results from mo-
lecular dynamic (MD) simulations. However, for rapid solidification
processes, where the heating and cooling rates can be on the order
of 103e108 K/s [19], the structures are formed through extreme
thermodynamic environments forcing the crystal melt interface
into a non-equilibrium state quantified by temperature and
composition gradients across the interface. Concerning tempera-
ture, to understand how its profile might affect the phase-field
simulations, we must first derive the equilibrium assumptions in
the Gibbs-Thomson condition.

The Gibbs-Thomson condition in two-dimensions [6,15,17,20,21]
relates the temperature at the interface, Ti, to the deviation from
the melting temperature, Tm, caused by the curvature and velocity
of the interface, Ti ¼ Tm � Tm

L
P

i¼1;2
½gðbnÞ þ gðbnÞqq� 1Ri

� Vn

mðbnÞ, where L is

the latent heat, gðbnÞ is the interfacial free energy, qi are the local
angles between the normal direction n, and the two principle di-
rections and Ri is the principle radii of curvature. The final two
terms, V and m, are the normal velocity of the interface and kinetic
coefficient respectively. The Gibbs-Thomson condition defines the
interfacial stiffness, gðbnÞ þ gðbnÞqq, in equilibrium where it is inde-
pendent of thermal gradients. However, recent studies of solid-
solid phase interactions using the capillary fluctuation method
[22,23] have shown that the interfacial stiffness is indeed depen-
dent on the thermal conditions. In rapid solidification processes,
where temperature gradient and interface velocity define the
microstructure, it is necessary to define an interfacial stiffness in
terms of both normal orientation and temperature gradient.

In this paper, we use MD simulations to apply non-equilibrium
thermal conditions through temperature gradient profiles
perpendicular to the interface and calculate the interfacial free
energies, stiffness and anisotropic characteristics for a pure
aluminum structure. These interface properties, calculated through
the capillary fluctuation method CFM [24], are compared to a
thermal equilibrium case when the gradient is zero and the
structure temperature is set to the melting temperature. From the
data, we can develop material specific temperature gradient-
dependent relationships for interfacial stiffness and free energy.
These properties can be used in subsequent multi-scale computa-
tional studies where interfacial stiffness and energy are key
parameters.

2. Theory

There have been various methods developed to study interfacial
properties in molecular dynamic (MD) simulations. For solid-liquid
solidification systems in equilibrium, the interfacial stiffness is
often calculated using the capillary fluctuation method (CFM)
[25e27] on a thin quasi-2D system. This method relates the inter-
facial stiffness to the mean square amplitude, hðxÞ ¼P

k
AðkÞeikx,

through equipartition and Fourier mode analysis such that:

jAðkÞj2 ¼ kbTs
bWðSðqÞ Þk2 (1)

where kb is the Boltzmann constant, Ts is the temperature of the
system, W is the width, b is the thickness, k is the wavenumber, g
represents the interface free energy and q if the angle between the
interface normal and the nominally flat normal direction. As with
the Gibbs-Thomson condition, the interfacial stiffness, defined here
as SðqÞ ¼ gþ gqq, inherently implies equilibrium across the inter-
face. To introduce a temperature dependent term to the CFM, we
must first look at the derivation of the system energy.

Hoyt [26] expressed the excess free energy of the two-phase

system in equilibrium as E ¼ b
Z W

0
gðqÞds. At the atomic scale for

short time steps, the interface fluctuations are small in amplitude

such that
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h0ðxÞ2

q
z1þ h0ðxÞ2

2 and h0ðxÞ ¼ tanðqÞzq. We can
therefore redefine the energy equationwith potential contributions
from the temperature gradient, G as:

E ¼ b
ZW
0

gðq;GÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h0ðxÞ2

q
dx (2)

To include the effects of a one-dimensional temperature
gradient, or G ¼ VT ¼ dT

dh, on the interfacial free energy, g, we
modify Hoyt's methodology to expand the multi-variable expres-
sion through a second-order Taylor series:

gðq;GÞzgþ gqqþ gGGþ 1
2

�
gqqq

2 þ gGGG
2
�
þ gqGqG (3)

By substituting Equation (3) into Equation (2), we can separate
the energy equation into the summation of five separate contri-
butions along the interface, Table 1:

Under periodic boundary conditions parallel to the interface
length we can reduce the second contribution term to zero,Z W

0
h0ðxÞdx ¼ 0. Similarly under the assumption of small height

fluctuations, the higher order terms of h0ðxÞz0, reducing the fourth
and fifth energy contributions to zero. The equation can be further
simplified if we consider the first contribution to be the energy of a
flat interface and define DE ¼ E � E1:

DE ¼ 1
2
b
�
gþ gqq þ gGGþ gGGG

2

2

�ZW
0

h0ðxÞ2dx (4)

If we compare Equation (4) to Hoyt's derivation for a system in

equilibrium [26], DE ¼ 1
2 bðgþ gqqÞ

Z W

0
h0ðxÞ2dx, we notice the

equations are identical when the gradient is zero and that stiffness
can be defined by the term within the parenthesis:

Sðq;GÞ ¼ gþ gqq þ gGGþ 1
2
gGGG

2 (5)

By taking the second order expansion of the Taylor series for the
interfacial free energy, an initial hypothesis is inferred that the
stiffness has a power relationship with the gradient. It is possible
that this relationship will be material-dependent, but will not be
explored in this work. The new derivation of stiffness satisfies the
boundary conditions for the equilibrium state when there is no

Table 1
Approximate energy contributions at an interface with applied temperature
gradient.

E:
b
Z W

0
gðq;GÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h0ðxÞ2

q
dx ¼

X5
i¼1

Ei

E1:
b
Z W

0

�
gþ gG þ gGGG

2

2

�
dx

E2:
b
Z W

0
h0ðxÞ½gq þ gqGG�dx ¼ 0

E3:
b
Z W

0
h0ðxÞ2

�
g

2
þ gqq

2
þ gGG

2
þ gGGG

2

4

�
dx

E4:
b
Z W

0
h0ðxÞ3

�
gq
2

þ gqGG
2

�
dx ¼ 0

E5:
b
Z W

0
h0ðxÞ4

hgqq
4

i
dx ¼ 0
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