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a b s t r a c t

A general Gibbs-Thomson equation is derived from the complete free energy description of precipitates
at grain boundaries, taking into account the excess free energy of the grain boundary e phase boundary
junction. In this model, the equilibrium shape of particles shows a strong dependency on the particle
size, which gives rise to a deviation from the classical theory of precipitation. The influence of the line
tension of triple junctions on the nucleation energy barrier is discussed.

© 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Precipitation is a common form of phase transformation in na-
ture: from water droplets in clouds to second-phase particles in
metals. The new phase is dispersed in the form of small particles in
the mother phase and its total volume fraction is so small that the
coalescence of different particles can be neglected. In a classical
model of precipitation, a second-phase particle is treated as a
sphere separated from the matrix by a phase boundary, whose
excess energy gives rise to a nucleation barrier. In heterogeneous
systems, nuclei are formed preferentially at certain locations with a
low energy barrier. An important kind of nucleation site in a
polycrystalline material is a grain boundary. It is commonly
observed that the grain interior in the vicinity of a grain boundary is
free of precipitates. One can expect that the precipitate-free-zone
(PFZ) can cover the whole grain interior when the grain size falls
below a certain value. In this case the precipitation at grain
boundaries becomes dominant.

Second-phase particles formed at grain boundaries are

accompanied by a special line defect, the triple junction (TJ) where
the phase boundary and the grain boundary meet. At the junction
the atoms should rearrange to accommodate the lattice- and
orientation differences of the three adjoining crystals and, conse-
quently, may increase or decrease the total free energy. The line
tension of a TJ, which is defined as the excess free energy with
respect to the length of the TJ line, was first introduced by Gibbs [1]
and recently accurately measured [2,3]. Also, molecular dynamics
(MD) simulations were carried out to estimate the excess energy of
a three-grain-boundary junction [4e7].

An analogon to a TJ in a liquid system is a three phase contact
line (TPCL) at the bottom of a droplet on a solid substrate. The
dependency of the contact angle at the TPCL on its curvature has
been studied extensively in sessile droplet experiments. The Young
equation, which describes the relation between contact angle q and
surface energy g, was modified to take this phenomenon into ac-
count. A new parameter, the “line tension” t, whose concept was
first introduced by Gibbs [1], has been introduced to represent a
curvature-dependent “force” on the TPCL. The modified Young
equation for a droplet on a flat horizontal substrate [8e10] reads

cos q ¼ gsg � gsl � t=r
glg

(1)

where gij are the surface tensions of the solid-gas (sg), solid-liquid
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(sl) and liquid-gas (lg) interfaces, respectively; r is the radius of
curvature of the TPCL, and t is the line tension.

Both positive and negative values of TPCL tensionwere reported.
In some sessile droplet experiments [11,12], smaller droplets
showed stronger wetting (smaller contact angle) than predicted by
the Young equation, which implies a negative line tension. In the
MD simulations of symmetric-tilt-grain-boundary junctions by
Srinivasan et al. [5] and Eich et al. [4], the TJ excess energy was
found to be potentially negative.

Both the magnitude and the sign of the line tension are under
controversy [13e15]. Deviation from the modified Young equation
for submicrometer sessile droplets has been shown by accurate
measurements on the contact angle [11,12,14]. Nevertheless, it is
certain that the contact angle can change in both directions with
the triple-junction curvature whose dependency can be semi-
quantitatively described by the modified Young equation. Com-
plete wetting or dewetting can be expected when the size of a
droplet or particle approaches zero.

The quantity corresponding to t in a solid material is the “triple-
junction energy”. In this text, we use the terms “line tension” and
“triple junction energy” interchangeably. The experimental results
on pure copper and copper alloys yielded a positive triple junction
energy. However, there is no proof that the triple junction energy in
other solids cannot be negative. This excess energy is an extra
driving force for microstructural restoration processes, such as
grain growth or precipitation, which has not been considered in
conventional theories.

A triple line cannot exist independently of grain- or phase
boundaries. It is therefore natural to express the triple line tension
in relation to the excess interfacial free energy. A dimensional
analysis yields that the ratio of the line tension t to the surface
energy gs has the dimension of a length. We introduce the quantity

r* ¼ t

gs
(2)

as a measure for the line tension of triple junctions and refer to it as
“characteristic length”. By applying this quantity to the modified
Young equation, the curvature-dependent term t=gr can be
simplified to r*=r, which will vanish for r[r*. Thus, the charac-
teristic length r* is the length scale on which the triple junction
energy is not negligible. Zhao et al. [2,3] measured the curvature
dependency of the dihedral angle at thermal grooves using atomic
force microscopy and determined the line tension of the GB-surface
triple junction, i.e. the groove root to be ð2:5±1:1Þ � 10�8J=m. Ac-
cording to this measurement the characteristic length of the TJ
tension is of the order of nanometers. In the following we shall
investigate the effect of triple-junctions on precipitation at grain
boundaries.

2. Equilibrium shape of a particle at a grain boundary

Let us consider a second phase particle located at a grain
boundary as shown in Fig. 1. Part of the grain boundary is replaced
by the particle and a circular triple line is formed. Assuming that
the grain boundary and TJ properties are isotropic, the particle
should have rotation symmetry. Taking into account the contribu-
tion of the TJ excess energy t, we can formulate the total free energy
of the particle as

G ¼ 2p
Zz 2
z 1

�
gsr

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r02

p
� Dp

r2

2

�
dz þ 2ptr0 � gbpr

2
0 (3)

where gs and gb are the phase boundary energy and grain
boundary energy, respectively. Dp represents the general volu-
metric (bulk) driving force. If we only consider the chemical
contribution, Dp ¼ ðgmatrix � gprecipitateÞ=Vm

precipitate , where g de-
notes the effective molar free energy and Vm is the molar volume.
For the precipitation of vacancies, the numerator in the expression
should be replaced by the chemical potential of vacancies mv, that is
Dp ¼ mv=V

m
v .

We derive the Euler equation and the transversality equations
from the first-order variation of G.

1
2p

dG ¼
Zz2
z1

�
Fr � d

dz
Fr0

�
drdz þ

h
Fr0 jz0�0
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where Fðr; r0Þ ¼ gsr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ r02

p
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2. The variation dG must be zero

for an arbitrary variation dr, dr0 and dz0, hence

Dp
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¼ r
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z0þ0

(7)

The first equation is the Euler equation. The second and third
equation are the transversality conditions. Note that the right hand
side of Eq. (5) is equal to two times of the mean curvature of the
surface obtained by rotating the curve rðzÞ. Supposed that surface
energy and driving force are constant for the upper and lower cap,
these two caps should be Constant-Mean-Curvature (CMC) sur-
faces. The CMC surfaces with circular symmetry are known as
Delaunay surfaces in geometry [16], such as plane, sphere, cylinder
and catenoid.

Integrating rðzÞ with the initial condition rðz1Þ ¼ 0 and r0ðz1Þ ¼
∞ yields a circle.

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2s � ðrs þ z1 � zÞ2

q
(8)

The radius rs is defined as the radius of curvature of the particle

surface. We can derive from Eq. (5) that rs ¼ 2gs
Dp .

Substituting the derivatives r0 by trigonometric functions of the
contact angles, the equations of the transversality conditions can be
transformed to

Fig. 1. Shape of a precipitate situated on grain boundary; the blue plane represents the
grain boundary and the green surfaces represent the phase boundary.
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