
Full length article

A continuum model for dislocation pile-up problems
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a b s t r a c t

A 2-d dislocation pile-up model is developed to solve problems with arrays of edge dislocations on one or
multiple slip planes. The model developed in this work has four unique features: 1) As a continuum
mechanics model, it captures the discrete behaviors of dislocations including the region near pile-up
boundaries. 2) It allows for a general distribution of dislocations and applied boundary conditions. 3)
The computational complexity does not quadratically scale with increased number of dislocations. 4) The
effect of anisotropy and stacking fault energy can be naturally modeled. Pile-ups against a lock under
shear load are extensively investigated, which shows the dependence of near-lock piles distribution on
the total number of dislocations. The stacking fault energy effect is found to be positively correlated to
the length of an equilibrated pile-up. The stress intensity near a bi-metallic interface is studied for both
isotropic material and anisotropic materials. The model is validated by reproducing the solutions of
problems for which analytical solutions are available. More complicated phenomena such as interlacing
and randomly distributed dislocations are also simulated.

© 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

1. Introduction

The prediction of plastic deformation of metals has been an
important research topic for decades, which primarily reduces to
the question of properly understanding the motions of dislocations
as the major cause of plastic flows in metals. A modern plasticity
theory, Field Dislocation Mechanics (FDM), has been developed to
predict the time-dependent mechanical response of bodies con-
taining a distribution of dislocations mathematically represented
by the dislocation density tensor. FDM has been completed,
generalized, and understood as a rigorous, continuum thermo-
mechanical model of dislocation dynamics and its collective be-
haviors (Acharya [3e5]; Acharya and Roy [1], Acharya [6,7]). The
theory has been majorly applied to modeling some physically
interesting phenomenological plasticity problems, for instance, size
effects and back-stress development (Roy and Acharya [34]; Puri
et al. [29e31]). Although these works take into account the dislo-
cation generation and motion statistically based on the dislocation
density tensor, the discrete nature of dislocation evolution, which
becomes very important when the characteristic length of internal
deformation fields or external sample size is at micron/submicron
scale (Berdichevsky and Dimiduk [10]), has not been fully captured.
Therefore, one of the objectives of this work is to demonstrate the

capability of FDM in modeling and predicting the motions of
dislocation microstructures. A well-known benchmark problem
that serves such a purpose is the study of dislocation pile-ups,
which, in addition to providing a key mechanism for size effects
(Mesarovic et al. [24]), also plays an important role in other phe-
nomena such as work-hardening, yielding, and cleavage.

The solution to the dislocation pile-up problem was first
attempted by Eshelby, Frank and Nabarro Eshelby et al. [14]; who
framed the question as follows: considering an array of identical
straight dislocations on the same slip plane forced against an
impenetrable wall, what are the equilibrated positions/distribution
of the dislocations and their corresponding stress fields? It should
be clearly noted that the problem stated as such is mathematically
simplified by the assumption of long, straight slip bands despite the
fact that such slip bands are rarely observed experimentally. The
impenetrable walls are also mathematically abstracted from
various physical objects in general, such as grain boundaries and
bimetallic interfaces (Pacheco and Mura [27]). However, despite
such simplifications, solving pile-up problems is difficult in the
sense that the equilibrium state of each dislocation is determined
by the combination of mutually repulsive/attractive dislocation
interactions and the externally applied loads. From a numerical
point of view, the computational cost of handling interactions be-
tween pairs of dislocations scales quadratically with the number of
dislocations, which is known as the major bottleneck for Discrete
Dislocation Methodologies in simulating strain hardening. OurE-mail address: xzhang11@stanford.edu.
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model does not have this constraint but requires a good quality of
mesh refinement near dislocation cores. Therefore the computa-
tional cost scales with the number of grid points.

As a brief review, we list some classical methods that have been
developed specifically for solving dislocation pile-up problems.

i The first model developed by Eshelby et al. [14] is based on the
balance of Peach Kohler forces on each dislocation, i.e.,

Xn
i¼1;isj

A
xj � xi

þ P
�
xj
� ¼ 0; j ¼ 1;2;… n: (1)

where xi;j are the i; jth dislocation positions to be solved; n is the
total number of dislocations; PðxjÞ is the applied stress at the jth
dislocation; A is a constant depending on the dislocation type with
A ¼ mb=2pð1� nÞ for edge dislocations. Eq. (1) is solved by intro-
ducing a polynomial,

f ðxÞ ¼
Yn
i¼1

ðx� xiÞ (2)

such that one can equivalently convert it to the following ordinary
differential equation,

f
00 ðxÞ þ 2PðxÞf 0ðxÞ þ qðn; xÞf ðxÞ ¼ 0 (3)

Eq. (3) is solvable provided that qðn; xÞ is chosen in a way such
that the equation has a nth degree polynomial solution whose roots
are real and distinct; thus xj can be determined as the roots of a set
of orthogonal polynomials subjected to certain constraints. How-
ever, this immediately sets a limitation to the method since finding
proper qðn; xÞ becomes mathematically difficult for arbitrary
loading/boundary conditions.

ii Head [19] considered solving double pile-ups and interlacing
problems by numerically exploring Eshelby‘s method. Here
double pile-ups refers to a group of positive dislocations next to a
negative group while both groups are forced to glide in opposite
directions and form pile-ups on two sides. Interlacing refers to
two groups of dislocations with opposite signs that lie on
adjacent slip planes. The leading dislocations of adjacent planes
may interlace and set the whole system equilibrium. Head‘s
method requires applied stresses large enough so that disloca-
tions cannot annihilate in double pile-ups. Also, the interlacing
of more than three pairs of dislocations is reported to be
intractable.

iii Leibfried (1951) [46] shows that one can obtain approximate
solutions by treating discrete dislocations with continuously
distributed dislocation density that can be determined from an
integral transform. This methodology is applied in recent works,
e.g., Akarapu and Hirth [8] and Ockendon et al. [26]; to study
pile-ups and double pile-ups. However, it has been demon-
strated that neglecting short range interaction effects leads to
inaccurate results Roy et al. [35]. A semi-continuum version has
to be developed Hall [17] in an attempt to improve the appro-
priateness of Leibfried's model in approximating discrete
microstructure near the pile-up head with continuous
functions.

iv Voskoboinikov et al. [39] proposes a methodology that accom-
modates the near-lock behavior of pile-ups by discretely rep-
resenting dislocations in the near-lock field and matching the
discrete stress field with the far field stress (where dislocations
are still continuously represented with dislocation density). The
method is applied in solving pile-ups against bimetallic

interface Voskoboinikov et al. [40] and Voskoboinikov et al. [41].
However, the method is only valid for constant shear load and
infinite isotropic domain. Some upscalingmethods for dynamics
of dislocation walls by means of G convergence on the space of
probability measures have been recently developed (van Meurs
and Muntean [38], Scardia et al. [36]). Those methods only deal
with dislocation walls (pile-ups on n slip planes with n/∞)
despite the non-physical assumption that dislocations move in
the form of walls. Rezaei Mianroodi et al. [32] applied Peierls-
Nabarro model to solve such problems and report qualitative
agreement with discreteness based methods.

The methodology proposed in this work stems from the 2-
d FDM framework developed in Acharya and Zhang [2]; Zhang
et al. [45], where the motion of dislocations is governed by a
kinematical rule of the plastic strain implying the conservation law
of the Nye tensor (The detailed proof of this geometrical argument
can be traced back to Acharya [7]). Thewhole system is governed by
a set of partial differential equations and therefore the computa-
tional cost does not explicitly depend on the number of disloca-
tions. This differentiates our model from all discrete-based
methodologies. In the 2-d FDM approach, modeling dislocation
microstructures is made possible by building multi-well non-
convex inelastic energy and dislocation core energy into the system
dissipation, which has the advantage in terms of capturing
discreteness behaviors, compared to the continuum and semi-
continuum approaches derived from Leibfried‘s model. This in-
elastic energy can be analogous to the stacking fault energy
accounted for in phase-field (Shen andWang [37]; Wang et al. [43];
Wang and Li [42]) and Peierls-Nabarro (PN)-based (Hu et al. [20],
Xiang et al. [44]; Mianroodi et al. [25]) dislocation models. We
should point out that those continuum models also have potential
to model equilibrated discrete dislocations and their interactions.
However, none of the models have yet solved the problems pre-
sented in this paper, i.e., explicitly modeling discrete dislocations
(up to 500) with nonlocal stress field in the 2-d domain.

It should be pointed out that both stacking fault energy and
dislocation core energy are physical quantities and that can be
fitted from finer scale calculations. Therefore, our model serves as a
multiscale modeling tool that connects the mesoscale phenomena
of dislocation pile-ups to the finer scale of atomic information.

In this paper, we validate our model by first solving a few
classical problems for which analytical solutions exist. Some more
complicated phenomena such as interlacing are thereafter
modeled. Specifically, the problem of dislocations piled-up against
a bi-metallic interface is investigated for both isotropic and aniso-
tropic materials. It is shown that behaviors of individual disloca-
tions are well captured, including in the near-interface region. We
are able to establish the relationship between the applied stress
and the dislocation spacings near the head of the dislocation pile-
up. The capability of modeling a quite general distribution of
many dislocations is shown by simulating a body with randomly
distributed dislocations, for which the stress-strain response is
examined. The problem of dislocations pile-up against a lock under
shear load is addressed in details. We show that the near-lock
distribution of dislocations depends on the number of disloca-
tions (up to 100). The pile-up length at equilibrium is shown to be
negatively correlated to the generalized stacking fault energy. Note
that a recent study (Pan et al. [28]) of pile-up effect in micro-pillars
using statistic model suggests that low stacking fault energy ex-
hibits more obvious plie-up effect (a longer pile-up length). Our
findings support their conclusions from the microscopic point of
view.

The rest of the paper is organized as follows, in section 2 the
formulations of the model are described; section 3 presents
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